File: Root_of_2.h

package info (click to toggle)
cgal 3.6.1-2
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 62,184 kB
  • ctags: 95,782
  • sloc: cpp: 453,758; ansic: 96,821; sh: 226; makefile: 120; xml: 2
file content (1381 lines) | stat: -rw-r--r-- 37,565 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
// Copyright (c) 2005,2006  INRIA Sophia-Antipolis (France)
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.5-branch/Number_types/include/CGAL/Root_of_2.h $
// $Id: Root_of_2.h 50183 2009-06-29 16:16:33Z sloriot $
//
//
// Author(s)     : Sylvain Pion, Monique Teillaud, Athanasios Kakargias, Pedro Machado

#ifndef CGAL_ROOT_OF_2_H
#define CGAL_ROOT_OF_2_H

#include <iostream>
#include <CGAL/number_type_basic.h>
#include <CGAL/Root_of_traits.h>
#include <CGAL/NT_converter.h>
#include <CGAL/Kernel/mpl.h>
#include <CGAL/enum.h>
#include <CGAL/tags.h>
#include <CGAL/Number_types/internal_functions_comparison_root_of_2.h>
#include <CGAL/Interval_arithmetic.h>
#include <CGAL/assertions.h>
#include <boost/type_traits/is_same.hpp>

#define CGAL_int(T)    typename First_if_different<int,    T>::Type
#define CGAL_double(T) typename First_if_different<double, T>::Type

namespace CGAL {

// Number type representing a real root of a polynomial
// of degree 1 or 2 over RT.
//
// It supports :
// - constructor from degree 2 polynomial coefficients and a boolean
// - constructor from degree 1 polynomial coefficients
// - constructor from RT
// - unary operator-()
// - additions, subtractions, multiplications with an RT.
// - additions, subtractions, multiplications with an RootOf_1.
// - add +, -, *, / with 2 root_of_2 (when it is possible - same gamma)
// - square()
// - <, >, <=, >=, ==, != (symetric, mixed with RT, mixed with RootOf_1, mixed with int)
// - compare()            (symetric, mixed with RT, mixed with RootOf_1, mixed with int)
// - sign()
// - to_double()
// - to_interval()
// - is_valid()
// - operator[] to access the coefficients  (leading coeff is always positive)
// - .conjuguate()
// - .discriminant()
// - .eval_at()
// - .sign_at()
// - .degree()
// - .is_valid()
// - operator<<()
// - print() ("pretty" printing)
// - make_root_of_2()
// - add sqrt() (when it's degree 1), or a make_sqrt<RT>(const RT &r) ?
// - inverse()
// TODO :
// - use Boost.Operators.
// - add subtraction/addition with a degree 2 Root_of of the same field ?
// - add constructor from Polynomial ?
//   There should be a proper separate class Polynomial.
// - in compare_roots, we evaluate the polynomial at some FT, or at some
//   root of degree 1 polynomials.  It would be nice to have a separate
//   polynomial class which performed this task (and others)...
// - overloaded versions of make_root_of_2<>() for Lazy_exact_nt<> and others.

template <class RT> struct Root_of_traits;

template < typename RT_ >
class Root_of_2 {

  // the value is the root of P(X) = C2.X^2 + C1.X + C0,
  // and C2 > 0.

public:

  typedef RT_ RT;
  typedef typename Root_of_traits<RT>::RootOf_1 FT;

private:

  FT  _alpha, _beta, _gamma;
  bool _rational;

public:

#ifdef CGAL_ROOT_OF_2_ENABLE_HISTOGRAM_OF_NUMBER_OF_DIGIT_ON_THE_COMPLEX_CONSTRUCTOR
  static int max_num_digit;
  static int histogram[10000];
#endif

  Root_of_2()
    : _alpha(0), _rational(true)
  {
    CGAL_assertion(is_valid());
  }

  Root_of_2(const RT& c0)
    : _alpha(c0), _rational(true)
  {
    CGAL_assertion(is_valid());
  }

  Root_of_2(const typename First_if_different<int, RT>::Type & c0)
    : _alpha(RT(c0)), _rational(true)
  {
    CGAL_assertion(is_valid());
  }

  Root_of_2(const typename First_if_different<FT, RT>::Type & c0)
    : _alpha(c0), _rational(true)
  {
    CGAL_assertion(is_valid());
  }

  Root_of_2(const RT& a, const RT& b) {
    CGAL_assertion( b != 0 );
    _alpha = FT(a,b);
    _rational = true;
    CGAL_assertion(is_valid());
  }

  Root_of_2(const RT& a, const RT& b, const RT& c, const bool s)
  {
    if ( a != 0 ) {
      _alpha = FT(-b,2*a);
      _gamma = CGAL_NTS square(alpha()) - FT(c,a);
      if(CGAL_NTS is_zero(gamma())) {
	_rational = true;
      } else {
	_beta = (s ? -1 : 1);
	_rational = false;
      }
    }
    else {
      CGAL_assertion( b != 0 );
      _rational = true;
      _alpha = FT(-c,b);
      _beta = 0;
      _gamma = 0;
    }
    CGAL_assertion(is_valid());
  }

  Root_of_2(const typename First_if_different<FT, RT>::Type & c0,
            const typename First_if_different<FT, RT>::Type & c1,
            const typename First_if_different<FT, RT>::Type & c2)
  {
    if(CGAL_NTS is_zero(c1) || CGAL_NTS is_zero(c2)) {
      _alpha = c0;
      _rational = true;

#ifdef CGAL_ROOT_OF_2_ENABLE_HISTOGRAM_OF_NUMBER_OF_DIGIT_ON_THE_COMPLEX_CONSTRUCTOR
      int n_a = c0.tam();
      if(max_num_digit < n_a) max_num_digit = n_a;
      histogram[n_a]++;
#endif

    } else {
      _alpha = c0;
      _beta = c1;
      _gamma = c2;
      _rational = false;

#ifdef CGAL_ROOT_OF_2_ENABLE_HISTOGRAM_OF_NUMBER_OF_DIGIT_ON_THE_COMPLEX_CONSTRUCTOR
      int n_a = c0.tam();
      int n_b = c1.tam();
      int n_c = c2.tam();
      if(max_num_digit < n_a) max_num_digit = n_a;
      if(max_num_digit < n_b) max_num_digit = n_b;
      if(max_num_digit < n_c) max_num_digit = n_c;
      histogram[n_a]++;
      histogram[n_b]++;
      histogram[n_c]++;
#endif

    }
    CGAL_assertion(is_valid());
  }

  template <typename RT2>
  Root_of_2(const Root_of_2<RT2>& r)
    : _alpha(r.alpha()), _beta(r.beta()), _gamma(r.gamma()), _rational(r.is_rational())
  {
  }

  Root_of_2 operator-() const
  {
    if(is_rational()) return Root_of_2(-alpha());
    return Root_of_2 (-alpha(), -beta(), gamma());
  }

  bool is_valid() const
  {
    if(!is_rational()) {
      return gamma() >= 0;
    } return true;
  }

  bool is_rational() const
  {
    return _rational;
  }

  Root_of_2 inverse() const
  {
    CGAL_assertion(!(CGAL_NTS is_zero(alpha()) && (CGAL_NTS is_zero(beta()) || CGAL_NTS is_zero(gamma())))); // root = 0,
    FT r = (CGAL_NTS square(alpha())) -  (CGAL_NTS square(beta()))*gamma();
    CGAL_assertion(!(CGAL_NTS is_zero(r)
                   && (CGAL_NTS sign(beta()) != CGAL_NTS sign(alpha()))));
// ex. 6 - 2 sqrt(9)
    if(CGAL_NTS is_zero(r)) return Root_of_2(1 / (2 * alpha()));
    else return Root_of_2(alpha()/r, -beta()/r, gamma());
  }

  Root_of_2 conjugate() const
  {
    if(is_rational()) return Root_of_2(alpha());
    return Root_of_2(alpha(),-beta(),gamma());
  }

  const FT& alpha() const
  {
    return _alpha;
  }

  const FT& beta() const
  {
    return _beta;
  }

  const FT& gamma() const
  {
    return _gamma;
  }

  bool is_smaller() const
  {
    return beta() <= 0;
  }

  // The following functions deal with the internal polynomial.
  // Probably they should move to a separate polynomial class.

  RT operator[](int i) const
  {
    typedef Rational_traits< FT > Rational;
    CGAL_assertion((i>=0) & (i<3));
    Rational r;
    const RT r1 = r.numerator(alpha());
    const RT d1 = r.denominator(alpha());
    const RT r2 = r.numerator(beta());
    const RT d2 = r.denominator(beta());
    const RT r3 = r.numerator(gamma());
    const RT d3 = r.denominator(gamma());
    if(i == 0) {
      return (CGAL_NTS square(d2)) * d3;
    }
    if(i == 1) {
      return -2 * (CGAL_NTS square(d2)) * d3 * r1;
    }
    // i == 2
    return ((CGAL_NTS square(d2)) * d3 * (CGAL_NTS square(r1))) -
           ((CGAL_NTS square(d1)) * r3 * (CGAL_NTS square(r2)));

  }

  RT discriminant() const
  {
    if(is_rational()) return RT(0);
    return CGAL_NTS square(operator[](1)) -
           4*(operator[](0))*(operator[](2));
  }

  template < typename T >
  T eval_at(const T& x) const
  {
    if(is_rational()) return x * (operator[](0)) - (operator[](1));
    if(CGAL_NTS is_zero(x)) return (operator[](2));
    const bool zeroC0 = CGAL_NTS is_zero((operator[](2)));
    const bool zeroC1 = CGAL_NTS is_zero((operator[](1)));
    if(zeroC0 && zeroC1) return x * (operator[](0));
    if(zeroC0) return x * ((operator[](1)) + x * (operator[](0)));
    if(zeroC1) return (x * x * (operator[](0))) + (operator[](2));
    return (operator[](2)) + x * ((operator[](1)) + x * (operator[](0)));
  }

  template < typename T >
  Sign sign_at(const T &x) const
  {
    // Maybe there is slightly more efficient.
    return CGAL_NTS sign(eval_at(x));
  }

}; // Root_of_2

// COERCION_TRAITS BEGIN

CGAL_DEFINE_COERCION_TRAITS_FOR_SELF_TEM(Root_of_2<RT>,class RT)

template <class RT>
struct Coercion_traits< RT , Root_of_2<RT> >{
    typedef Tag_true  Are_explicit_interoperable;
    typedef Tag_true  Are_implicit_interoperable;
    typedef Root_of_2<RT> Type;
    struct Cast{
        typedef Type result_type;
        Type operator()(const Root_of_2<RT>& x)   const { return x;}
        Type operator()(const RT& x) const {
            return Type(x);}
    };
};

template <class RT>
struct Coercion_traits< CGAL_int(RT) , Root_of_2<RT> >{
    typedef Tag_true  Are_explicit_interoperable;
    typedef Tag_true  Are_implicit_interoperable;
    typedef Root_of_2<RT> Type;
    struct Cast{
        typedef Type result_type;
        Type operator()(const Root_of_2<RT>& x)   const { return x;}
        Type operator()(CGAL_int(RT) x) const {
            return Type(x);}
    };
};

template <class RT>
struct Coercion_traits< typename Root_of_traits<RT>::RootOf_1 , Root_of_2<RT> >{
    typedef Tag_true  Are_explicit_interoperable;
    typedef Tag_true  Are_implicit_interoperable;
    typedef Root_of_2<RT> Type;
    struct Cast{
        typedef Type result_type;
        Type operator()(const Root_of_2<RT>& x)   const { return x;}
        Type operator()(const RT& x) const {
            return Type(x);}
    };
};


template <class RT, class NTX >
struct Coercion_traits< Root_of_2<RT> , NTX  >
    :public Coercion_traits<NTX , Root_of_2<RT> >{};

// COERCION_TRAITS END

#ifdef CGAL_ROOT_OF_2_ENABLE_HISTOGRAM_OF_NUMBER_OF_DIGIT_ON_THE_COMPLEX_CONSTRUCTOR

template < typename RT_ >
int Root_of_2<RT_>::max_num_digit = 0;

template < typename RT_ >
int Root_of_2<RT_>::histogram[10000];

#endif


template < class NT1,class NT2 >
struct NT_converter < Root_of_2<NT1> , Root_of_2<NT2> >
  : public std::unary_function< NT1, NT2 >
{
    Root_of_2<NT2>
    operator()(const Root_of_2<NT1> &a) const
    {
      if(a.is_rational()) {
        return Root_of_2<NT2>(NT_converter<NT1,NT2>()(a.alpha()));
      } else {
        return Root_of_2<NT2>(NT_converter<NT1,NT2>()(a.alpha()),
                              NT_converter<NT1,NT2>()(a.beta()),
                              NT_converter<NT1,NT2>()(a.gamma()));
      }
    }
};

template < class NT1,class NT2 >
struct NT_converter < NT1 , Root_of_2<NT2> >
  : public std::unary_function< NT1, NT2 >
{
    Root_of_2<NT2>
    operator()(const NT1 &a) const
    {
        return Root_of_2<NT2>(NT_converter<NT1,NT2>()(a));
    }
};

template < class NT1 >
struct NT_converter < Root_of_2<NT1>, Root_of_2<NT1> >
  : public std::unary_function< NT1, NT1 >
{
    const Root_of_2<NT1> &
    operator()(const Root_of_2<NT1> &a) const
    {
        return a;
    }
};

template <class RT>
class Algebraic_structure_traits<Root_of_2<RT> >
    :public Algebraic_structure_traits_base<Root_of_2<RT> , Null_tag >{
public:

    typedef Root_of_2<RT> Type;
    typedef typename Algebraic_structure_traits<RT>::Is_exact Is_exact;
    struct Square
        : public std::unary_function< Root_of_2<RT> , Root_of_2<RT> >{
        Root_of_2<RT> operator()(const Root_of_2<RT>& a){

            CGAL_assertion(is_valid(a));

            if(a.is_rational()) {
                return Root_of_2<RT>(CGAL_NTS square(a.alpha()));
            }

            // It's easy to get the explicit formulas for the square of the two roots.
            // Then it's easy to compute their sum and their product, which gives the
            // coefficients of the polynomial (X^2 - Sum X + Product).
            return Root_of_2<RT> ( CGAL_NTS square(a.alpha()) +
                    (CGAL_NTS square(a.beta())) * a.gamma(),
                    2 * a.alpha() * a.beta(),
                    a.gamma());
        }
    };
};


template<class RT>
class Real_embeddable_traits<Root_of_2<RT> >
    :public INTERN_RET::Real_embeddable_traits_base<Root_of_2<RT> , CGAL::Tag_true >{
    typedef Real_embeddable_traits<RT> RET_RT;
    typedef typename Root_of_traits<RT>::RootOf_1 Root_of_1;
public:
    typedef Root_of_2<RT> Type;
    typedef Tag_true Is_real_embeddable;

    class Abs
        : public std::unary_function< Type, Type >{
    public:
        Type operator()(const Type& x) const {
            return (x>=0)?x:-x;
        }
    };

    class Sgn
        : public std::unary_function< Type, ::CGAL::Sign >{
    public:
        ::CGAL::Sign operator()(const Type& a) const {
            const ::CGAL::Sign sign_alpha = CGAL_NTS sign(a.alpha());
            if (a.is_rational()) return (sign_alpha);
            // If alpha and beta have the same sign, return this sign.
            const ::CGAL::Sign sign_beta = CGAL_NTS sign (a.beta());
            if (sign_alpha == sign_beta) return (sign_alpha);
            if (sign_alpha == ZERO) return (sign_beta);

            // Compare the squared values of m_alpha and of m_beta*sqrt(m_gamma):
            const Comparison_result res = CGAL_NTS compare (CGAL_NTS square(a.alpha()),
                    CGAL_NTS square(a.beta()) * a.gamma());
            if (res == LARGER) return sign_alpha;
            else if (res == SMALLER) return sign_beta;
            else return ZERO;
        }
    };

    class Compare
        : public std::binary_function< Type,
                                  Type,
                                  Comparison_result >{
    public:
        Comparison_result operator()(
                const Type& a,
                const Type& b) const{
            typedef typename Root_of_traits< RT >::RootOf_1 FT;
            typedef typename First_if_different<FT, RT>::Type WhatType;
            typedef typename boost::is_same< WhatType, RT > do_not_filter;

            CGAL_assertion(is_valid(a) & is_valid(b));

            if (a.is_rational()) return (CGAL_NTS compare(a.alpha(), b));
            if (b.is_rational()) return (CGAL_NTS compare(a, b.alpha()));

            if(!do_not_filter::value) {
                Interval_nt<> ia = CGAL_NTS to_interval(a);
                Interval_nt<> ib = CGAL_NTS to_interval(b);
                if(ia.inf() > ib.sup()) return LARGER;
                if(ia.sup() < ib.inf()) return SMALLER;
            }

            // Perform the exact comparison:
            // Note that the comparison of (a1 + b1*sqrt(c1)) and (a2 + b2*sqrt(c2))
            // is equivalent to comparing (a1 - a2) and (b2*sqrt(c2) -  b1*sqrt(c1)).
            // We first determine the signs of these terms.
            const FT diff_alpha = a.alpha() - b.alpha();
            const ::CGAL::Sign sign_left = CGAL_NTS sign(diff_alpha);
            const FT a_sqr = a.beta()*a.beta()*a.gamma();
            const FT b_sqr = b.beta()*b.beta()*b.gamma();
            Comparison_result right_res = CGAL_NTS compare (b_sqr, a_sqr);
            ::CGAL::Sign sign_right = ZERO;

            if (right_res == LARGER)
                {
                    // Take the sign of b2:
                    sign_right = CGAL_NTS sign(b.beta());
                }
            else if (right_res == SMALLER)
                {
                    // Take the opposite sign of b1:
                    switch (CGAL_NTS sign (a.beta()))
                        {
                        case POSITIVE :
                            sign_right = NEGATIVE;
                            break;
                        case NEGATIVE:
                            sign_right = POSITIVE;
                            break;
                        case ZERO:
                            sign_right = ZERO;
                            break;
                        default:
                            // We should never reach here.
                            CGAL_error();
                        }
                }
            else
                {
                    // We take the sign of (b2*sqrt(c2) -  b1*sqrt(c1)), where both terms
                    // have the same absolute value. The sign is equal to the sign of b2,
                    // unless both terms have the same sign, so the whole expression is 0.
                    sign_right = CGAL_NTS sign (b.beta());
                    if (sign_right == CGAL_NTS sign (a.beta()))
                        sign_right = ZERO;
                }

            // Check whether on of the terms is zero. In this case, the comparsion
            // result is simpler:
            if (sign_left == ZERO)
                {
                    if (sign_right == POSITIVE)
                        return (SMALLER);
                    else if (sign_right == NEGATIVE)
                        return (LARGER);
                    else
                        return (EQUAL);
                }
            else if (sign_right == ZERO)
                {
                    if (sign_left == POSITIVE)
                        return (LARGER);
                    else if (sign_left == NEGATIVE)
                        return (SMALLER);
                    else
                        return (EQUAL);
                }

            // If the signs are not equal, we can determine the comparison result:
            if (sign_left != sign_right)
                {
                    if (sign_left == POSITIVE)
                        return (LARGER);
                    else
                        return (SMALLER);
                }

            // We now square both terms and look at the sign of the one-root number:
            //   ((a1 - a2)^2 - (b1^2*c1 + b2^2*c2)) + 2*b1*b2*sqrt(c1*c2)
            //
            // If both signs are negative, we should swap the comparsion result
            // we eventually compute.
            const FT A = diff_alpha*diff_alpha - (a_sqr + b_sqr);
            const FT B = 2 * a.beta() * b.beta();
            const FT C = a.gamma() * b.gamma();
            const ::CGAL::Sign sgn = CGAL_NTS sign(Root_of_2<RT>(A, B, C));
            const bool swap_res = (sign_left == NEGATIVE);

            if (sgn == POSITIVE)
                return (swap_res ? SMALLER : LARGER);
            else if (sgn == NEGATIVE)
                return (swap_res ? LARGER : SMALLER);
            else
                return (EQUAL);
        }

        Comparison_result
        inline
        operator()(
                const Type& a,
                const Root_of_1& b
        ) const{
            typedef typename Root_of_traits< RT >::RootOf_1 FT;
            typedef typename First_if_different<FT, RT>::Type WhatType;
            typedef typename boost::is_same< WhatType, RT > do_not_filter;

            CGAL_assertion(is_valid(a) & is_valid(b));

            if (a.is_rational()) return (CGAL_NTS compare (a.alpha(), b));

            if(!do_not_filter::value) {
                Interval_nt<> ia = CGAL_NTS to_interval(a);
                Interval_nt<> ib = CGAL_NTS to_interval(b);
                if(ia.inf() > ib.sup()) return LARGER;
                if(ia.sup() < ib.inf()) return SMALLER;
            }

            // Perform the exact comparison.
            const ::CGAL::Sign   sgn = CGAL_NTS  sign(a - b);
            if (sgn == POSITIVE) return (LARGER);
            else if (sgn == NEGATIVE) return (SMALLER);
            else return (EQUAL);
        }

        Comparison_result
        inline
        operator()(
                const Root_of_1& a,
                const Type& b
        ) const{ return opposite(this->operator()(b,a) ); }

        Comparison_result
        inline
        operator()(
                const Type& a,
                const RT& b
        ) const{
            typedef typename Root_of_traits< RT >::RootOf_1 FT;
            typedef typename First_if_different<FT, RT>::Type WhatType;
            typedef typename boost::is_same< WhatType, RT > do_not_filter;

            CGAL_assertion(is_valid(a) & is_valid(b));

            if (a.is_rational()) return (CGAL_NTS compare (a.alpha(), b));

            if(!do_not_filter::value) {
                Interval_nt<> ia = CGAL_NTS to_interval(a);
                Interval_nt<> ib = CGAL_NTS to_interval(b);
                if(ia.inf() > ib.sup()) return LARGER;
                if(ia.sup() < ib.inf()) return SMALLER;
            }

            // Perform the exact comparison.
            const ::CGAL::Sign   sgn = CGAL_NTS sign(a - b);
            if (sgn == POSITIVE) return (LARGER);
            else if (sgn == NEGATIVE) return (SMALLER);
            else return (EQUAL);
        }

        inline
        Comparison_result
        operator()(const RT &a, const Root_of_2<RT> &b)
        {
            return opposite(this->operator()(b, a));
        }

        inline
        Comparison_result
        operator()( CGAL_int(RT)  a, const Root_of_2<RT> &b)
        {
            return this->operator()(RT(a),b);
        }

        inline
        Comparison_result
        operator()(const Root_of_2<RT> &a, CGAL_int(RT) b)
        {
            return this->operator()(a,RT(b));
        }
    };

    class To_double
        : public std::unary_function< Type, double >{
    public:
        double operator()(const Type& x) const {
            if (x.is_rational()) {
			        return (CGAL_NTS to_double(x.alpha()));
			      }
            return CGAL_NTS to_double(x.alpha()) +
                   CGAL_NTS to_double(x.beta()) *
                   (std::sqrt)(CGAL_NTS to_double(x.gamma()));
        }
    };

    class To_interval
        : public std::unary_function< Type, std::pair< double, double > >{
    public:
        std::pair<double,double> operator()(const Type& x) const {

            if(x.is_rational()) return CGAL_NTS to_interval(x.alpha());

            const Interval_nt<true>   alpha_in
                = CGAL_NTS to_interval(x.alpha());
            const Interval_nt<true>   beta_in
                = CGAL_NTS to_interval(x.beta());
            const Interval_nt<true>   gamma_in
                = CGAL_NTS to_interval(x.gamma());
            const Interval_nt<true>&  x_in = alpha_in +
                (beta_in * CGAL_NTS sqrt(gamma_in));
            return x_in.pair();
        }
    };
};

template < typename RT > inline
bool operator<(const Root_of_2<RT> &a, const Root_of_2<RT> &b) {
  return CGAL_NTS compare(a, b) < 0;
}

template < typename RT > inline
bool operator<(const typename Root_of_traits< RT >::RootOf_1 &a,
	  const Root_of_2<RT> &b)
{
  return CGAL_NTS compare(a, b) < 0;
}

template < typename RT > inline
bool operator<(const Root_of_2<RT> &a,
	  const typename Root_of_traits< RT >::RootOf_1 &b)
{
  return CGAL_NTS compare(a, b) < 0;
}

template < typename RT > inline
bool operator<(const RT &a, const Root_of_2<RT> &b)
{
  return CGAL_NTS compare(a, b) < 0;
}

template < typename RT > inline
bool operator<(const Root_of_2<RT> &a, const RT &b)
{
  return CGAL_NTS compare(a, b) < 0;
}

template < typename RT > inline
bool operator<(const CGAL_int(RT) &a, const Root_of_2<RT> &b)
{
  return CGAL_NTS compare(a, b) < 0;
}

template < typename RT > inline
bool operator<(const Root_of_2<RT> &a, const CGAL_int(RT) &b)
{
  return CGAL_NTS compare(a, b) < 0;
}

template < typename RT > inline
bool operator>(const Root_of_2<RT> &a, const Root_of_2<RT> &b)
{
  return b < a;
}

template < typename RT > inline
bool operator>(const typename Root_of_traits< RT >::RootOf_1 &a,
	  const Root_of_2<RT> &b)
{
  return b < a;
}

template < typename RT > inline
bool operator>(const Root_of_2<RT> &a,
	  const typename Root_of_traits< RT >::RootOf_1 &b)
{
  return b < a;
}

template < typename RT > inline
bool operator>(const RT &a, const Root_of_2<RT> &b)
{
  return b < a;
}

template < typename RT > inline
bool operator>(const Root_of_2<RT> &a, const RT &b)
{
  return b < a;
}

template < typename RT > inline
bool operator>(const CGAL_int(RT) &a, const Root_of_2<RT> &b)
{
  return b < a;
}

template < typename RT > inline
bool operator>(const Root_of_2<RT> &a, const CGAL_int(RT) &b)
{
  return b < a;
}

template < typename RT > inline
bool operator>=(const Root_of_2<RT> &a, const Root_of_2<RT> &b)
{
  return !(a < b);
}

template < typename RT > inline
bool operator>=(const typename Root_of_traits< RT >::RootOf_1 &a,
	   const Root_of_2<RT> &b)
{
  return !(a < b);
}

template < typename RT > inline
bool operator>=(const Root_of_2<RT> &a,
	   const typename Root_of_traits< RT >::RootOf_1 &b)
{
  return !(a < b);
}

template < typename RT > inline
bool operator>=(const RT &a, const Root_of_2<RT> &b)
{
  return !(a < b);
}

template < typename RT > inline
bool operator>=(const Root_of_2<RT> &a, const RT &b)
{
  return !(a < b);
}

template < typename RT > inline
bool operator>=(const CGAL_int(RT) &a, const Root_of_2<RT> &b)
{
  return !(a < b);
}

template < typename RT > inline
bool operator>=(const Root_of_2<RT> &a, const CGAL_int(RT) &b)
{
  return !(a < b);
}

template < typename RT > inline
bool operator<=(const Root_of_2<RT> &a, const Root_of_2<RT> &b)
{
  return !(a > b);
}

template < typename RT > inline
bool operator<=(const typename Root_of_traits< RT >::RootOf_1 &a,
	   const Root_of_2<RT> &b)
{
  return !(a > b);
}

template < typename RT > inline
bool operator<=(const Root_of_2<RT> &a,
	   const typename Root_of_traits< RT >::RootOf_1 &b)
{
  return !(a > b);
}

template < typename RT > inline
bool operator<=(const RT &a, const Root_of_2<RT> &b)
{
  return !(a > b);
}

template < typename RT > inline
bool operator<=(const Root_of_2<RT> &a, const RT &b)
{
  return !(a > b);
}

template < typename RT > inline
bool operator<=(const CGAL_int(RT) &a, const Root_of_2<RT> &b)
{
  return !(a > b);
}

template < typename RT > inline
bool operator<=(const Root_of_2<RT> &a, const CGAL_int(RT) &b)
{
  return !(a > b);
}

template < typename RT > inline
bool operator==(const Root_of_2<RT> &a, const Root_of_2<RT> &b)
{
  return CGAL_NTS compare(a, b) == 0;
}

template < typename RT > inline
bool operator==(const typename Root_of_traits< RT >::RootOf_1 &a,
	   const Root_of_2<RT> &b)
{
  return CGAL_NTS compare(a, b) == 0;
}

template < typename RT > inline
bool operator==(const Root_of_2<RT> &a,
	   const typename Root_of_traits< RT >::RootOf_1 &b)
{
  return CGAL_NTS compare(a, b) == 0;
}

template < typename RT > inline
bool operator==(const RT &a, const Root_of_2<RT> &b)
{
  return CGAL_NTS compare(a, b) == 0;
}

template < typename RT > inline
bool operator==(const Root_of_2<RT> &a, const RT &b)
{
  return CGAL_NTS compare(a, b) == 0;
}

template < typename RT > inline
bool operator==(const CGAL_int(RT) &a, const Root_of_2<RT> &b)
{
  return CGAL_NTS compare(a, b) == 0;
}

template < typename RT > inline
bool operator==(const Root_of_2<RT> &a, const CGAL_int(RT) &b)
{
  return CGAL_NTS compare(a, b) == 0;
}

template < typename RT > inline
bool operator!=(const Root_of_2<RT> &a, const Root_of_2<RT> &b)
{
  return !(a == b);
}

template < typename RT > inline
bool operator!=(const typename Root_of_traits< RT >::RootOf_1 &a,
	   const Root_of_2<RT> &b)
{
  return !(a == b);
}

template < typename RT > inline
bool operator!=(const Root_of_2<RT> &a,
	   const typename Root_of_traits< RT >::RootOf_1 &b)
{
  return !(a == b);
}

template < typename RT > inline
bool operator!=(const RT &a, const Root_of_2<RT> &b)
{
  return !(a == b);
}

template < typename RT > inline
bool operator!=(const Root_of_2<RT> &a, const RT &b)
{
  return !(a == b);
}

template < typename RT > inline
bool operator!=(const CGAL_int(RT) &a, const Root_of_2<RT> &b)
{
  return !(a == b);
}

template < typename RT > inline
bool operator!=(const Root_of_2<RT> &a, const CGAL_int(RT) &b)
{
  return !(a == b);
}

// END OF COMPARISON OPERATORS

template < typename RT >
Root_of_2<RT> inverse(const Root_of_2<RT> &a)
{
  CGAL_assertion(is_valid(a));
  return a.inverse();
}

template < typename RT >
Root_of_2<RT> make_sqrt(const RT& r)
{
  CGAL_assertion(r >= 0);
  if(CGAL_NTS is_zero(r)) return Root_of_2<RT>();
  return Root_of_2<RT>(0,1,r);
}

template < typename RT >
Root_of_2<RT> make_sqrt(const typename Root_of_traits< RT >::RootOf_1& r)
{
  CGAL_assertion(r >= 0);
  if(CGAL_NTS is_zero(r)) return Root_of_2<RT>();
  return Root_of_2<RT>(0,1,r);
}


template < typename RT >
Root_of_2<RT>
operator-(const Root_of_2<RT> &a,
	  const typename Root_of_traits< RT >::RootOf_1& b)
{
  typedef typename Root_of_traits< RT >::RootOf_1  RootOf_1;
  typedef Rational_traits< RootOf_1 >        Rational;
  //RT should be the same as Rational::RT

  CGAL_assertion(is_valid(a) & is_valid(b));

  if(a.is_rational()) {
    return Root_of_2<RT>(a.alpha() - b);
  }

  return Root_of_2<RT>(a.alpha() - b, a.beta(), a.gamma());
}

template < typename RT >
inline
Root_of_2<RT>
operator-(const typename Root_of_traits< RT >::RootOf_1 &a,
	  const Root_of_2<RT> &b)
{
  return -(b-a);
}

template < typename RT >
Root_of_2<RT>
operator-(const Root_of_2<RT> &a, const RT& b)
{
  typedef typename Root_of_traits< RT >::RootOf_1  RootOf_1;
  typedef Rational_traits< RootOf_1 >        Rational;
  //RT should be the same as Rational::RT

  CGAL_assertion(is_valid(a) & is_valid(b));

  if(a.is_rational()) {
    return Root_of_2<RT>(a.alpha() - b);
  }

  return Root_of_2<RT>(a.alpha() - b, a.beta(), a.gamma());
}

template < typename RT > inline
Root_of_2<RT> operator-(const Root_of_2<RT> &a, const CGAL_int(RT)& b)
{
  return (a-RT(b));
}

template < typename RT > inline
Root_of_2<RT> operator-(const RT &a, const Root_of_2<RT> &b)
{
  return (-(b-a));
}

template < typename RT > inline
Root_of_2<RT> operator-(const CGAL_int(RT)& a, const Root_of_2<RT> &b)
{
  return (-(b-RT(a)));
}

template < typename RT > inline
Root_of_2<RT> operator+(const Root_of_2<RT> &a,
	  const typename Root_of_traits< RT >::RootOf_1& b)
{
  return a - typename Root_of_traits< RT >::RootOf_1(-b);
}

template < typename RT > inline
Root_of_2<RT> operator+(const typename Root_of_traits< RT >::RootOf_1 &a,
	  const Root_of_2<RT> &b)
{
  return b - typename Root_of_traits< RT >::RootOf_1(-a);
}

template < typename RT > inline
Root_of_2<RT> operator+(const Root_of_2<RT> &a, const RT& b)
{
  return a - RT(-b);
}

template < typename RT > inline
Root_of_2<RT> operator+(const Root_of_2<RT> &a, const CGAL_int(RT)& b)
{
  return a - RT(-b);
}

template < typename RT > inline
Root_of_2<RT> operator+(const RT &a, const Root_of_2<RT> &b)
{
  return b - RT(-a);
}

template < typename RT > inline
Root_of_2<RT> operator+(const CGAL_int(RT) &a, const Root_of_2<RT> &b)
{
  return b - RT(-a);
}

template < typename RT >
Root_of_2<RT>
operator*(const Root_of_2<RT> &a,
	  const typename Root_of_traits< RT >::RootOf_1& b)
{
  typedef typename Root_of_traits< RT >::RootOf_1  RootOf_1;
  typedef Rational_traits< RootOf_1 >        Rational;
  //RT should be the same as Rational::RT

  CGAL_assertion(is_valid(a) & is_valid(b));

  if(CGAL_NTS is_zero(b)) return Root_of_2<RT>();

  if(a.is_rational()) {
    return Root_of_2<RT>(a.alpha() * b);
  }

  return Root_of_2<RT>(a.alpha() * b,
                       a.beta() * b,
                       a.gamma());
}

template < typename RT >
inline
Root_of_2<RT>
operator*(const typename Root_of_traits< RT >::RootOf_1 &a,
	  const Root_of_2<RT> &b)
{
  return b * a;
}

template < typename RT >
Root_of_2<RT>
operator*(const Root_of_2<RT> &a, const RT& b)
{
  typedef typename Root_of_traits< RT >::RootOf_1  RootOf_1;
  typedef Rational_traits< RootOf_1 >        Rational;
  //RT should be the same as Rational::RT

  CGAL_assertion(is_valid(a) & is_valid(b));

  if(CGAL_NTS is_zero(b)) return Root_of_2<RT>();

  if(a.is_rational()) {
    return Root_of_2<RT>(a.alpha() * b);
  }

  return Root_of_2<RT>(a.alpha() * b,
                       a.beta() * b,
                       a.gamma());
}

template < typename RT > inline
Root_of_2<RT> operator*(const Root_of_2<RT> &a, const CGAL_int(RT)& b)
{
  return a * RT(b);
}

template < typename RT > inline
Root_of_2<RT> operator*(const RT &a, const Root_of_2<RT> &b)
{
  return b * a;
}

template < typename RT > inline
Root_of_2<RT> operator*(const CGAL_int(RT) &a, const Root_of_2<RT> &b)
{
  return b * RT(a);
}

template < typename RT >
Root_of_2<RT>
operator/(const Root_of_2<RT> &a, const RT& b)
{
  typedef typename Root_of_traits< RT >::RootOf_1  RootOf_1;

  CGAL_assertion(b != 0);
  CGAL_assertion(is_valid(a));

  if(a.is_rational()) {
    return Root_of_2<RT>(a.alpha() / b);
  }

  return Root_of_2<RT>(a.alpha()/b,
                       a.beta()/b,
                       a.gamma());
}

template < typename RT > inline
Root_of_2<RT> operator/(const Root_of_2<RT> &a, const CGAL_int(RT)& b)
{
  return a / RT(b);
}

template < typename RT > inline
Root_of_2<RT> operator/(const RT& a, const Root_of_2<RT> &b)
{
  return b.inverse() * a;
}

template < typename RT > inline
Root_of_2<RT> operator/(const CGAL_int(RT)& a, const Root_of_2<RT> &b)
{
  return b.inverse() * RT(a);
}

template < typename RT >
Root_of_2<RT>
operator/(const Root_of_2<RT> &a,
	  const typename Root_of_traits< RT >::RootOf_1& b)
{
  typedef typename Root_of_traits< RT >::RootOf_1  RootOf_1;

  CGAL_assertion(b != 0);
  CGAL_assertion(is_valid(a));

  if(a.is_rational()) {
    return Root_of_2<RT>(a.alpha() / b);
  }

  return Root_of_2<RT>(a.alpha()/b,
                       a.beta()/b,
                       a.gamma());
}

template < typename RT > inline
Root_of_2<RT> operator/(const typename Root_of_traits< RT >::RootOf_1& a,
          const Root_of_2<RT> &b)
{
  return b.inverse() * a;
}

template < typename RT >
Root_of_2<RT>
operator-(const Root_of_2<RT> &a,
	  const Root_of_2<RT> &b)
{

  CGAL_assertion(is_valid(a));
  CGAL_assertion(is_valid(b));
  CGAL_assertion((a.is_rational() || b.is_rational()) || (a.gamma() == b.gamma()));

  if(a.is_rational() && b.is_rational()) {
    return Root_of_2<RT>(a.alpha() - b.alpha());
  }
  if(a.is_rational()) return a.alpha() - b;
  if(b.is_rational()) return a - b.alpha();

  if(a.beta() == b.beta()) {
    return Root_of_2<RT>(a.alpha() - b.alpha());
  }

  return Root_of_2<RT>(a.alpha() - b.alpha(),
                       a.beta() - b.beta(),
                       a.gamma());
}

template < typename RT > inline
Root_of_2<RT> operator+(const Root_of_2<RT> &a, const Root_of_2<RT> &b)
{
  return b - (-a);
}

template < typename RT >
Root_of_2<RT>
operator*(const Root_of_2<RT> &a,
	  const Root_of_2<RT> &b)
{

  CGAL_assertion(is_valid(a));
  CGAL_assertion(is_valid(b));
  CGAL_assertion((a.is_rational() || b.is_rational()) || (a.gamma() == b.gamma()));

  if(a.is_rational() && b.is_rational()) {
    return Root_of_2<RT>(a.alpha() * b.alpha());
  }

  if(a.is_rational()) {
    if(CGAL_NTS is_zero(a.alpha())) return Root_of_2<RT>();
    return Root_of_2<RT>(b.alpha() * a.alpha(), b.beta() * a.alpha(), b.gamma());
  }

  if(b.is_rational()) {
    if(CGAL_NTS is_zero(b.alpha())) return Root_of_2<RT>();
    return Root_of_2<RT>(a.alpha() * b.alpha(), a.beta() * b.alpha(), a.gamma());
  }

  return Root_of_2<RT>(b.beta() * a.beta() * a.gamma() + a.alpha() * b.alpha(),
                       a.alpha() * b.beta() + a.beta() * b.alpha(),
                       a.gamma());
}

template < typename RT > inline
Root_of_2<RT> operator/(const Root_of_2<RT> &a, const Root_of_2<RT> &b)
{
  return b.inverse() * a;
}

template < typename RT >
double
to_double(const Root_of_2<RT> &x)
{
  if (x.is_rational()) {
    return (CGAL_NTS to_double(x.alpha()));
  }
  return CGAL_NTS to_double(x.alpha()) +
         CGAL_NTS to_double(x.beta()) *
         (std::sqrt)(CGAL_NTS to_double(x.gamma()));
}

template < typename RT >
std::ostream &
operator<<(std::ostream &os, const Root_of_2<RT> &r)
{
  if(r.is_rational()) {
    return os << r.is_rational() << " " << r.alpha();
  } else {
    return os << r.is_rational() << " " << r.alpha() << " "
	      << r.beta() << " "
	      << r.gamma();
  }
}

template < typename RT >
std::istream &
operator>>(std::istream &is, Root_of_2<RT> &r)
{
  typedef typename Root_of_traits< RT >::RootOf_1  FT;
  FT a,b,c;
  bool rat;
  is >> rat;
  if(rat) {
    is >> a;
    if(is) r = Root_of_2<RT>(a);
    return is;
  }
  is >> a >> b >> c;
  if(is) r = Root_of_2<RT>(a,b,c);
  return is;
}


template < typename RT >
void
print(std::ostream &os, const Root_of_2<RT> &r)
{
  if(r.is_rational()) {
    os << "(" << r.alpha() << ")";
  } else {
    os << "(" << r.alpha() << " + " << r.beta() <<
          "*sqrt(" << r.gamma() << ")"<< ")";
  }
}

template < typename RT >
class Is_valid<Root_of_2<RT> >: public std::unary_function<Root_of_2<RT> , bool>{
public:
    bool operator()(const Root_of_2<RT> &r)
    {
        return r.is_valid();
    }
};

template <class NT>
inline const Root_of_2<NT>& min BOOST_PREVENT_MACRO_SUBSTITUTION
(const Root_of_2<NT>& p, const Root_of_2<NT>& q){
  return (std::min)(p, q);
}
template <class NT> 
inline const Root_of_2<NT>& max BOOST_PREVENT_MACRO_SUBSTITUTION
(const Root_of_2<NT>& p, const Root_of_2<NT>& q){
  return (std::max)(p, q);
}

} // namespace CGAL

#undef CGAL_int
#undef CGAL_double

#endif // CGAL_ROOT_OF_2_H