1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
// Copyright (c) 2005,2006 INRIA Sophia-Antipolis (France)
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.6-branch/Number_types/include/CGAL/Root_of_traits.h $
// $Id: Root_of_traits.h 51456 2009-08-24 17:10:04Z spion $
//
//
// Author(s) : Sylvain Pion, Monique Teillaud, Athanasios Kakargias, Michael Hemmer
#ifndef CGAL_ROOT_OF_TRAITS_H
#define CGAL_ROOT_OF_TRAITS_H
#include <CGAL/number_type_basic.h>
#include <CGAL/Root_of_2.h>
#include <CGAL/Quotient.h>
CGAL_BEGIN_NAMESPACE
namespace internal {
template < typename NT, class Algebraic_category>
struct Root_of_traits_helper{
typedef Quotient<NT> Root_of_1;
typedef CGAL::Root_of_2<NT> Root_of_2;
struct Make_root_of_2{
typedef Root_of_2 result_type;
Root_of_2 operator()(const NT& a, const NT& b, const NT& c){
return Root_of_2(a,b,c);
}
Root_of_2 operator()(const NT& a, const NT& b, const NT& c, bool s){
return Root_of_2(a,b,c,s);
}
Root_of_2 operator()(const Root_of_1& a,
const Root_of_1& b,
const Root_of_1& c){
return Root_of_2(a,b,c);
}
Root_of_2 operator()(const Root_of_1& a,
const Root_of_1& b,
const Root_of_1& c,
bool s){
return Root_of_2(a,b,c,s);
}
};
};
template < typename FT>
struct Root_of_traits_helper < FT, Field_tag >
{
typedef FT Root_of_1;
private:
typedef Fraction_traits<FT> FrT;
// Field must be a Type (Decomposable)
BOOST_STATIC_ASSERT((FrT::Is_fraction::value));
typedef typename FrT::Numerator_type RT;
typedef typename FrT::Decompose Decompose;
public:
typedef CGAL::Root_of_2< RT > Root_of_2;
struct Make_root_of_2{
typedef Root_of_2 result_type;
Root_of_2
operator()(const FT& a, const FT& b, const FT& c){
return Root_of_2(a,b,c);
}
Root_of_2
operator()(const FT& a, const FT& b, const FT& c, bool smaller){
Decompose decompose;
RT a_num,b_num,c_num;
RT a_den,b_den,c_den; // Denomiantor same as RT
decompose(a,a_num,a_den);
decompose(b,b_num,b_den);
decompose(c,c_num,c_den);
RT a_ = a_num * b_den * c_den;
RT b_ = b_num * a_den * c_den;
RT c_ = c_num * a_den * b_den;
return make_root_of_2(a_,b_,c_,smaller);
}
};
};
template < typename NT >
struct Root_of_traits_helper < NT, Field_with_sqrt_tag >
{
typedef NT Root_of_1;
typedef NT Root_of_2;
struct Make_root_of_2{
typedef NT result_type;
// just a copy, not sure about the semantic of smaller
NT operator()(const NT& a, const NT& b, const NT& c, bool smaller){
// former make_root_of_2_sqrt()
CGAL_assertion( a != 0 );
NT discriminant = CGAL_NTS square(b) - a*c*4;
CGAL_assertion( discriminant >= 0 );
NT d = CGAL_NTS sqrt(discriminant);
if ((smaller && a>0) || (!smaller && a<0))
d = -d;
return (d-b)/(a*2);
}
// it's so easy
NT operator()(const NT& a, const NT& b, const NT& c){
return a + b * CGAL_NTS sqrt(c) ;
}
};
};
template < typename NT >
struct Root_of_traits_helper < NT, Field_with_kth_root_tag >
:public Root_of_traits_helper < NT, Field_with_sqrt_tag>{};
template < typename NT >
struct Root_of_traits_helper < NT, Field_with_root_of_tag >
:public Root_of_traits_helper < NT, Field_with_sqrt_tag>{};
} // namespace internal
// Default Traits class for NT types
template < typename NT >
struct Root_of_traits
: public internal::Root_of_traits_helper<NT,
typename Algebraic_structure_traits<NT>::Algebraic_category> {
typedef internal::Root_of_traits_helper<NT,
typename Algebraic_structure_traits<NT>::Algebraic_category> Base;
typedef typename Base::Root_of_1 RootOf_1;
typedef typename Base::Root_of_2 RootOf_2;
};
template <bool B>
struct Root_of_traits<Interval_nt<B> >{
typedef Interval_nt<B> Root_of_1;
typedef Interval_nt<B> Root_of_2;
typedef Root_of_1 RootOf_1;
typedef Root_of_2 RootOf_2;
struct Make_root_of_2{
typedef Interval_nt<B> result_type;
// just a copy, not sure about the semantic of smaller
Interval_nt<B> operator()(const Interval_nt<B>& a, const Interval_nt<B>& b, const Interval_nt<B>& c, bool smaller){
// former make_root_of_2_sqrt()
if (CGAL::possibly(a==0))
return Interval_nt<B>::largest();
Interval_nt<B> discriminant = CGAL_NTS square(b) - a*c*4;
CGAL_assertion(discriminant >= 0);
Interval_nt<B> d = CGAL_NTS sqrt(discriminant);
if ((smaller && a>0) || (!smaller && a<0))
d = -d;
return (d-b)/(a*2);
}
// it's so easy
Interval_nt<B> operator()(const Interval_nt<B>& a, const Interval_nt<B>& b, const Interval_nt<B>& c){
return a + b * CGAL_NTS sqrt(c) ;
}
};
};
template < class NT >
inline
typename Root_of_traits< NT >::Root_of_2
make_root_of_2(const NT &a, const NT &b, const NT &c)
{
typename Root_of_traits<NT>::Make_root_of_2 make_root_of_2;
return make_root_of_2(a,b,c);
}
template < class NT >
inline
typename Root_of_traits< NT >::Root_of_2
make_root_of_2(const NT &a, const NT &b, const NT &c,const bool smaller)
{
typename Root_of_traits<NT>::Make_root_of_2 make_root_of_2;
return make_root_of_2(a,b,c,smaller);
}
CGAL_END_NAMESPACE
#endif // CGAL_ROOT_OF_TRAITS_H
|