File: Segment_Delaunay_graph_2.h

package info (click to toggle)
cgal 3.6.1-2
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 62,184 kB
  • ctags: 95,782
  • sloc: cpp: 453,758; ansic: 96,821; sh: 226; makefile: 120; xml: 2
file content (1720 lines) | stat: -rw-r--r-- 51,766 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
// Copyright (c) 2003,2004,2005,2006  INRIA Sophia-Antipolis (France) and
// Notre Dame University (U.S.A.).  All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.5-branch/Segment_Delaunay_graph_2/include/CGAL/Segment_Delaunay_graph_2.h $
// $Id: Segment_Delaunay_graph_2.h 48908 2009-04-26 14:03:12Z spion $
// 
//
// Author(s)     : Menelaos Karavelas <mkaravel@cse.nd.edu>



#ifndef CGAL_SEGMENT_DELAUNAY_GRAPH_2_H
#define CGAL_SEGMENT_DELAUNAY_GRAPH_2_H

#include <iostream>
#include <vector>
#include <list>
#include <set>
#include <map>
#include <algorithm>
#include <boost/tuple/tuple.hpp>

#include <CGAL/Segment_Delaunay_graph_2/basic.h>

#include <CGAL/Triangulation_2.h>
#include <CGAL/Segment_Delaunay_graph_storage_traits_2.h>
#include <CGAL/Segment_Delaunay_graph_vertex_base_2.h>
#include <CGAL/Triangulation_data_structure_2.h>
#include <CGAL/Triangulation_face_base_2.h>

#include <CGAL/in_place_edge_list.h>
#include <CGAL/Segment_Delaunay_graph_2/edge_list.h>
#include <CGAL/Segment_Delaunay_graph_2/Traits_wrapper_2.h>
#include <CGAL/Segment_Delaunay_graph_2/Constructions_C2.h>

#include <CGAL/Iterator_project.h>
#include <CGAL/utility.h>


/*
  Conventions:
  ------------
  1. we treat segments as open; the endpoints are separate objects
  2. a segment of length zero is treated as a point
  3. a point is deleted only if it has no segment adjacent to it
  4. when a segment is deleted it's endpoints are not deleted
  5. the user can force the deletion of endpoints; this is only done
     if condition 3 is met.
  6. when objects are written to a stream we distinguish between
     points and segments; points start by a 'p' and segments by an 's'.
*/


CGAL_BEGIN_NAMESPACE

CGAL_SEGMENT_DELAUNAY_GRAPH_2_BEGIN_NAMESPACE

namespace Internal {

  template<typename Edge, typename LTag> struct Which_list;

  // use the in-place edge list
  template<typename E>
  struct Which_list<E,Tag_true>
  {
    typedef E                           Edge;
    typedef In_place_edge_list<Edge>    List;
  };

  // do not use the in-place edge list
  template<typename E>
  struct Which_list<E,Tag_false>
  {
    typedef E                                 Edge;
    // change the following to Tag_false in order to use
    // CGAL's Unique_hash_map
    typedef Tag_true                          Use_stl_map_tag;
    typedef Edge_list<Edge,Use_stl_map_tag>   List;
  };


  template < class Node >
  struct Project_site_2 {
    typedef Node                   argument_type;
    typedef typename Node::Site_2  Site;
    typedef Site                   result_type;
    Site& operator()(const Node& x) const { 
      static Site s;
      s = x.site();
      return s;
    }
    //    const Site& operator()(const Node& x) const { return x.site(); }
  };

  template < class Node, class Site_t >
  struct Project_input_to_site_2 {
    typedef Node                   argument_type;
    typedef Site_t                 Site;
    typedef Site                   result_type;
    Site& operator()(const Node& x) const {
      static Site s;
      if ( boost::tuples::get<2>(x) /*x.third*/ ) { // it is a point
	//	s = Site::construct_site_2(*x.first);
	s = Site::construct_site_2( *boost::tuples::get<0>(x) );
      } else {
	//	s = Site::construct_site_2(*x.first, *x.second);
	s = Site::construct_site_2
	  (*boost::tuples::get<0>(x), *boost::tuples::get<1>(x));
      }
      return s;
    }
  };

  template<typename T, typename U>
  struct Check_type_equality_for_info
  {
    Check_type_equality_for_info()
    {
      ERROR__INFO_TYPES_OF_insert_AND_Storage_traits_with_info_2_MUST_MATCH
	(T(), U());
    }
  };

  template<typename T>
  struct Check_type_equality_for_info<T,T>
  {
  };

} // namespace Internal

CGAL_SEGMENT_DELAUNAY_GRAPH_2_END_NAMESPACE


template<class Gt, class ST, class STag, class D_S, class LTag >
class Segment_Delaunay_graph_hierarchy_2;



template<class Gt,
	 class ST = Segment_Delaunay_graph_storage_traits_2<Gt>,
	 class D_S = Triangulation_data_structure_2 < 
                Segment_Delaunay_graph_vertex_base_2<ST>,
                Triangulation_face_base_2<Gt> >,
	 class LTag = Tag_false >
class Segment_Delaunay_graph_2
  : private Triangulation_2<
          Segment_Delaunay_graph_traits_wrapper_2<Gt>, D_S >
{
  friend class Segment_Delaunay_graph_hierarchy_2<Gt,ST,Tag_true,D_S,LTag>;
  friend class Segment_Delaunay_graph_hierarchy_2<Gt,ST,Tag_false,D_S,LTag>;
protected:
  // LOCAL TYPES
  //------------
  typedef Segment_Delaunay_graph_2<Gt,ST,D_S,LTag>       Self;

  typedef Segment_Delaunay_graph_traits_wrapper_2<Gt>   Modified_traits;
  typedef Triangulation_2<Modified_traits,D_S>           DG;
  typedef DG                                            Delaunay_graph;

  typedef LTag                                          List_tag;

public:
  // PUBLIC TYPES
  //-------------
  typedef D_S                                     Data_structure;
  typedef D_S                                     Triangulation_data_structure;
  typedef Gt                                     Geom_traits;
  typedef ST                                     Storage_traits;
  typedef typename Gt::Site_2                    Site_2;
  typedef typename Gt::Point_2                   Point_2;

  typedef typename D_S::Edge                      Edge;
  typedef typename D_S::Vertex_handle             Vertex_handle;
  typedef typename D_S::Face_handle               Face_handle;
  typedef typename D_S::Vertex                    Vertex;
  typedef typename D_S::Face                      Face;

  typedef typename D_S::size_type                 size_type;

  typedef typename D_S::Vertex_circulator         Vertex_circulator;
  typedef typename D_S::Edge_circulator           Edge_circulator;
  typedef typename D_S::Face_circulator           Face_circulator;

  typedef typename D_S::Face_iterator             All_faces_iterator;
  typedef typename D_S::Vertex_iterator           All_vertices_iterator;
  typedef typename D_S::Edge_iterator             All_edges_iterator;

  typedef typename DG::Finite_faces_iterator     Finite_faces_iterator;
  typedef typename DG::Finite_vertices_iterator  Finite_vertices_iterator;
  typedef typename DG::Finite_edges_iterator     Finite_edges_iterator;

  typedef typename Storage_traits::Point_container     Point_container;
  typedef typename Storage_traits::Point_handle        Point_handle;
  typedef typename Storage_traits::const_Point_handle  const_Point_handle;

protected:
  typedef typename Geom_traits::Arrangement_type_2  AT2;
  typedef typename AT2::Arrangement_type            Arrangement_type;

  // these containers should have point handles and should replace the
  // point container...
  typedef boost::tuples::tuple<Point_handle,Point_handle,bool>  Site_rep_2;

  struct Site_rep_less_than {
    // less than for site reps
    bool operator()(const Site_rep_2& x, const Site_rep_2& y) const {
      Point_handle x1 = boost::tuples::get<0>(x);
      Point_handle y1 = boost::tuples::get<0>(y);

      if ( &(*x1) < &(*y1) ) { return true; }
      if ( &(*y1) < &(*x1) ) { return false; }

      Point_handle x2 = boost::tuples::get<1>(x);
      Point_handle y2 = boost::tuples::get<1>(y);

      return &(*x2) < &(*y2);
    }
  };

  typedef std::set<Site_rep_2,Site_rep_less_than>  Input_sites_container;
  typedef typename Input_sites_container::const_iterator
  All_inputs_iterator;

  typedef
  CGAL_SEGMENT_DELAUNAY_GRAPH_2_NS::Internal::
  Project_input_to_site_2<Site_rep_2, Site_2>
  Proj_input_to_site;

  typedef CGAL_SEGMENT_DELAUNAY_GRAPH_2_NS::Internal::Project_site_2<Vertex>
  Proj_site;

  struct Point_handle_less_than {
    // less than
    bool operator()(const const_Point_handle& x,
		    const const_Point_handle& y) const {
      return &(*x) < &(*y);
    }
  };

  typedef std::pair<Point_handle,Point_handle>   Point_handle_pair;

  typedef std::map<Point_handle,Point_handle,Point_handle_less_than>
  Handle_map;

public:
  typedef Iterator_project<All_inputs_iterator, Proj_input_to_site>
  Input_sites_iterator;

  typedef Iterator_project<Finite_vertices_iterator, 
                           Proj_site>            Output_sites_iterator;
protected:
  // LOCAL VARIABLE(S)
  //------------------
  // the container of points
  Point_container pc_;
  Input_sites_container isc_;
  Storage_traits st_;

protected:
  // MORE LOCAL TYPES
  //-----------------
  typedef typename Gt::Intersections_tag        Intersections_tag;

  typedef std::map<Face_handle,bool>            Face_map;
  typedef std::vector<Edge>                     Edge_vector;

  typedef std::list<Vertex_handle>              Vertex_list;
  typedef typename Vertex_list::iterator        Vertex_list_iterator;

  typedef Triple<Vertex_handle,Vertex_handle,Vertex_handle>
  Vertex_triple;

  typedef Vertex_handle                         Vh_triple[3];
  typedef std::map<Face_handle,Sign>            Sign_map;

  typedef std::pair<Face_handle,Face_handle>    Face_pair;

  typedef typename Storage_traits::Storage_site_2   Storage_site_2;

  // the edge list
  typedef typename
  CGAL_SEGMENT_DELAUNAY_GRAPH_2_NS::Internal::Which_list<Edge,List_tag>::List 
  List;

public:
  // CREATION
  //---------
  Segment_Delaunay_graph_2(const Geom_traits& gt = Geom_traits(),
			   const Storage_traits& st = Storage_traits())
    : DG(gt), st_(st) {}

  template< class Input_iterator >
  Segment_Delaunay_graph_2(Input_iterator first, Input_iterator beyond,
			   const Geom_traits& gt = Geom_traits(),
			   const Storage_traits& st = Storage_traits())
    : DG(gt), st_(st)
  {
    insert(first, beyond);
  }

  Segment_Delaunay_graph_2(const Self& other);
  Self& operator=(const Self& other);

public:
  // ACCESS METHODS
  // --------------
  const Geom_traits&  geom_traits() const { return DG::geom_traits(); }

  const Storage_traits&  storage_traits() const { return st_; }

  const Data_structure&   data_structure() const { return this->_tds; }
  const Triangulation_data_structure& tds() const { return this->_tds; }
  const Point_container&  point_container() const { return pc_; }

  inline size_type number_of_input_sites() const {
    return isc_.size();
  }

  inline size_type number_of_output_sites() const {
    return number_of_vertices();
  }

  inline size_type number_of_vertices() const {
    return DG::number_of_vertices();
  }

  inline size_type number_of_faces() const {
    return DG::number_of_faces();
  }

  inline Vertex_handle infinite_vertex() const {
    return DG::infinite_vertex();
  }

  inline Face_handle infinite_face() const {
    return DG::infinite_face();
  }

  inline Vertex_handle finite_vertex() const {
    return DG::finite_vertex();
  }

  inline int dimension() const {
    return DG::dimension();
  }

  using Delaunay_graph::cw;
  using Delaunay_graph::ccw;

public:
  // TRAVERSAL OF THE DUAL GRAPH
  //----------------------------
  inline Finite_faces_iterator finite_faces_begin() const {
    return DG::finite_faces_begin();
  }

  inline Finite_faces_iterator finite_faces_end() const {
    return DG::finite_faces_end();
  }

  inline Finite_vertices_iterator finite_vertices_begin() const {
    return DG::finite_vertices_begin();
  }

  inline Finite_vertices_iterator finite_vertices_end() const {
    return DG::finite_vertices_end();
  }

  inline Finite_edges_iterator finite_edges_begin() const {
    return DG::finite_edges_begin();    
  }

  inline Finite_edges_iterator finite_edges_end() const {
    return DG::finite_edges_end();    
  }

  inline All_faces_iterator all_faces_begin() const {
    return DG::all_faces_begin();
  }

  inline All_faces_iterator all_faces_end() const {
    return DG::all_faces_end();
  }

  inline All_vertices_iterator all_vertices_begin() const {
    return DG::all_vertices_begin();
  }

  inline All_vertices_iterator all_vertices_end() const {
    return DG::all_vertices_end();
  }

  inline All_edges_iterator all_edges_begin() const {
    return DG::all_edges_begin();
  }

  inline All_edges_iterator all_edges_end() const {
    return DG::all_edges_end();
  }

  inline Input_sites_iterator input_sites_begin() const {
    return Input_sites_iterator(isc_.begin());
  }

  inline Input_sites_iterator input_sites_end() const {
    return Input_sites_iterator(isc_.end());
  }

  inline Output_sites_iterator output_sites_begin() const {
    return Output_sites_iterator(finite_vertices_begin());
  }

  inline Output_sites_iterator output_sites_end() const {
    return Output_sites_iterator(finite_vertices_end());    
  }

public:
  // CIRCULATORS
  //------------
  inline Face_circulator
  incident_faces(Vertex_handle v,
		 Face_handle f = Face_handle()) const {
    return DG::incident_faces(v, f);
  }

  inline Vertex_circulator
  incident_vertices(Vertex_handle v,
		    Face_handle f = Face_handle()) const { 
    return DG::incident_vertices(v, f);
  }

  inline Edge_circulator
  incident_edges(Vertex_handle v,
		 Face_handle f = Face_handle()) const {
    return DG::incident_edges(v, f);
  }
 
public:
  // PREDICATES
  //-----------
  inline bool is_infinite(const Vertex_handle& v) const {
    return DG::is_infinite(v);
  }

  inline bool is_infinite(const Face_handle& f) const {
    return DG::is_infinite(f);
  }

  inline bool is_infinite(const Face_handle& f, int i) const {
    return DG::is_infinite(f, i);
  }

  inline bool is_infinite(const Edge& e) const {
    return is_infinite(e.first, e.second);
  }

  inline bool is_infinite(const Edge_circulator& ec) const {
    return DG::is_infinite(ec);
  }

public:
  // INSERTION METHODS
  //------------------
  template<class Input_iterator>
  inline size_type insert(Input_iterator first, Input_iterator beyond) {
    return insert(first, beyond, Tag_false());
  }

  template<class Input_iterator>
  size_type insert(Input_iterator first, Input_iterator beyond, Tag_true)
  {
    std::vector<Site_2> site_vec;
    for (Input_iterator it = first; it != beyond; ++it) {
      site_vec.push_back(Site_2(*it));
    }
    std::random_shuffle(site_vec.begin(), site_vec.end());
    return insert(site_vec.begin(), site_vec.end(), Tag_false());
  }

  template<class Input_iterator>
  size_type insert(Input_iterator first, Input_iterator beyond,	Tag_false)
  {
    // do it the obvious way: insert them as they come;
    // one might think though that it might be better to first insert
    // all end points and then all segments, or a variation of that.
    size_type n_before = number_of_vertices();
    for (Input_iterator it = first; it != beyond; ++it) {
      insert(*it);
    }
    size_type n_after = number_of_vertices();
    return n_after - n_before;
  }

  // insert a point
  inline Vertex_handle insert(const Point_2& p) {
    // update input site container
    Point_handle ph = register_input_site(p);
    Storage_site_2 ss = st_.construct_storage_site_2_object()(ph);
    return insert_point(ss, p, Vertex_handle());
  }

  inline Vertex_handle insert(const Point_2& p, Vertex_handle vnear) {
    // update input site container
    Point_handle ph = register_input_site(p);
    Storage_site_2 ss = st_.construct_storage_site_2_object()(ph);
    return insert_point(ss, p, vnear);
  }

protected:
  // insert a point without registering it in the input sites
  // container: useful for the hierarchy
  inline Vertex_handle insert_no_register(const Storage_site_2& ss,
					  const Point_2& p,
					  Vertex_handle vnear) {
    return insert_point(ss, p, vnear);
  }

public:
  // insert a segment
  inline Vertex_handle insert(const Point_2& p0, const Point_2& p1) {
    // update input site container
    Point_handle_pair php = register_input_site(p0, p1);
    Storage_site_2 ss =
      st_.construct_storage_site_2_object()(php.first, php.second);
    Vertex_handle v = insert_segment(ss, Site_2::construct_site_2(p0, p1),
				     Vertex_handle());
    if ( v == Vertex_handle() ) {
      unregister_input_site(php.first, php.second);
    }
    return v;
  }

  // inserting a segment whose endpoints have already been inserted
  // update input site container
  inline Vertex_handle insert(const Vertex_handle& v0,
			      const Vertex_handle& v1) {
    CGAL_precondition( v0->storage_site().is_point() &&
		       v1->storage_site().is_point() );

    Point_handle h0 = v0->storage_site().point();
    Point_handle h1 = v1->storage_site().point();
    Storage_site_2 ss = st_.construct_storage_site_2_object()(h0, h1);

    // update input site container
    Point_handle_pair php = register_input_site(h0, h1);

    if ( number_of_vertices() == 2 ) {
      return insert_third(ss, v0, v1);
    }

    Vertex_handle v = insert_segment_interior(ss.site(), ss, v0);
    if ( v == Vertex_handle() ) {
      unregister_input_site(php.first, php.second);
    }
    return v;
  }

  inline Vertex_handle insert(const Point_2& p0, const Point_2& p1, 
			      Vertex_handle vnear) {
    // update input site container
    Point_handle_pair php = register_input_site(p0, p1);
    Storage_site_2 ss =
      st_.construct_storage_site_2_object()(php.first, php.second);
    Vertex_handle v =
      insert_segment(ss, Site_2::construct_site_2(p0, p1), vnear);
    if ( v == Vertex_handle() ) {
      unregister_input_site(php.first, php.second);
    }
    return v;
  }

  inline Vertex_handle insert(const Site_2& t) {
    return insert(t, Vertex_handle());
  }

  Vertex_handle insert(const Site_2& t, Vertex_handle vnear)
  {
    // the intended use is to unify the calls to insert(...);
    // thus the site must be an exact one; 
    CGAL_precondition( t.is_input() );

    // update input site container

    if ( t.is_segment() ) {
      Point_handle_pair php =
	register_input_site( t.source_of_supporting_site(),
			     t.target_of_supporting_site() );
      Storage_site_2 ss =
	st_.construct_storage_site_2_object()(php.first, php.second);
      Vertex_handle v = insert_segment(ss, t, vnear);
      if ( v == Vertex_handle() ) {
	unregister_input_site( php.first, php.second );
      }
      return v;
    } else if ( t.is_point() ) {
      Point_handle ph = register_input_site( t.point() );
      Storage_site_2 ss = st_.construct_storage_site_2_object()(ph);
      return insert_point(ss, t.point(), vnear);
    } else {
      CGAL_precondition ( t.is_defined() );
      return Vertex_handle(); // to avoid compiler error
    }
  }

protected:
  template<class SSite>
  inline void convert_info1(SSite& ss_trg, const SSite& ss_src,
			    bool is_src, int,
			    typename SSite::Has_info_tag const* = 0) const
  {
    //    std::cerr << "converting info..." << std::flush;
    typename Storage_traits::Convert_info convert = st_.convert_info_object();

    ss_trg.set_info( convert(ss_src.info(), is_src) );
    //    std::cerr << " done!" << std::endl;
  }

  template<class SSite>
  inline void convert_info1(SSite& /*  ss_trg */,
			    const SSite& /* ss_src */, bool, char) const
  {
  }

  void convert_info(Storage_site_2& ss_trg,
		    const Storage_site_2& ss_src, bool is_src) const {
    CGAL_precondition( ss_src.is_segment() && ss_trg.is_point() );
    CGAL_precondition( ss_src.is_input() && ss_trg.is_input() );
    CGAL_assertion( (is_src && same_points(ss_src.source_site(), ss_trg)) ||
		    (!is_src && same_points(ss_src.target_site(), ss_trg))
		    );
    convert_info1(ss_trg, ss_src, is_src, 0);
  }

  template<class SSite>
  inline void merge_info1(Vertex_handle v, const SSite& ss, int,
			  typename SSite::Has_info_tag const* = 0)
  {
    //    std::cerr << "merging info..." << std::flush;
    Storage_site_2 ss_v = v->storage_site();

    typename Storage_traits::Merge_info merge = st_.merge_info_object();

    ss_v.set_info( merge(ss_v.info(), ss.info()) );
    v->set_site(ss_v);
    //    std::cerr << " done!" << std::endl;
  }

  template<class SSite>
  inline void merge_info1(Vertex_handle, const SSite&, char) const
  {
  }

  // merges the info of the storage site of the vertex handle with the
  // info of the given site; the vertex_handle contains the storage
  // site with the new info
  inline void merge_info(Vertex_handle v, const Storage_site_2& ss)  {
    CGAL_precondition( (v->storage_site().is_segment() &&
			ss.is_segment() &&
			same_segments(v->site(), ss.site())) ||
		       (v->storage_site().is_point() &&
			ss.is_point() &&
			same_points(v->site(), ss.site())) ||
    		       (v->storage_site().is_point() &&	ss.is_segment())
    		       );
    merge_info1(v, ss, 0);
  }

public:
  template<typename Info_t>
  inline Vertex_handle insert(const Site_2& t,
			      const Info_t& info) {
    return insert(t, info, Vertex_handle());
  }

  template<typename Info_t>
  Vertex_handle insert(const Site_2& t,
		       const Info_t& info,
		       Vertex_handle vnear)
  {
    typedef typename Storage_traits::Info Info;
    CGAL_SEGMENT_DELAUNAY_GRAPH_2_NS::Internal::
      Check_type_equality_for_info<Info_t, Info>();
    // the intended use is to unify the calls to insert(...);
    // thus the site must be an exact one; 
    CGAL_precondition( t.is_input() );

    // update input site container

    if ( t.is_segment() ) {
      Point_handle_pair php =
	register_input_site( t.source_of_supporting_site(),
			     t.target_of_supporting_site() );
      Storage_site_2 ss =
	st_.construct_storage_site_2_object()(php.first, php.second);
      ss.set_info(info);
      Vertex_handle v = insert_segment(ss, t, vnear);
      if ( v == Vertex_handle() ) {
	unregister_input_site( php.first, php.second );
      }
      return v;
    } else if ( t.is_point() ) {
      Point_handle ph = register_input_site( t.point() );
      Storage_site_2 ss = st_.construct_storage_site_2_object()(ph);
      ss.set_info(info);
      return insert_point(ss, t.point(), vnear);
    } else {
      CGAL_precondition ( t.is_defined() );
      return Vertex_handle(); // to avoid compiler error
    }
  }

  // REMOVAL METHODS
  //----------------
protected:
  bool is_star(const Vertex_handle& v) const;
  bool is_linear_chain(const Vertex_handle& v0, const Vertex_handle& v1,
		       const Vertex_handle& v2) const;
  bool is_flippable(const Face_handle& f, int i) const;

  void minimize_degree(const Vertex_handle& v);

  // this method does not really do the job as intended, i.e., for removal
  void equalize_degrees(const Vertex_handle& v, Self& small_d,
			std::map<Vertex_handle,Vertex_handle>& vmap,
			List& l) const;

  void expand_conflict_region_remove(const Face_handle& f,
				     const Site_2& t,
				     const Storage_site_2& ss,
				     List& l, Face_map& fm,
				     Sign_map& sign_map);

  void find_conflict_region_remove(const Vertex_handle& v,
				   const Vertex_handle& vnearest,
				   List& l, Face_map& fm, Sign_map& vm);

  template<class OutputItFaces>
  OutputItFaces get_faces(const List& l, OutputItFaces fit) const
  {
    // map that determines if a face has been visited
    std::map<Face_handle,bool> fmap;

    // compute the initial face
    Edge e_front = l.front();
    Face_handle fstart = e_front.first->neighbor(e_front.second);

    // do the recursion
    return get_faces(l, fstart, fmap, fit);
  }

  template<class OutputItFaces>
  OutputItFaces get_faces(const List& l, Face_handle f,
			  std::map<Face_handle,bool>& fmap,
			  OutputItFaces fit) const
  {
    // if the face has been visited return
    if ( fmap.find(f) != fmap.end() ) { return fit; }

    // mark the face as visited
    fmap[f] = true;

    // output the face
    *fit++ = f;

    // recursively go to neighbors
    for (int i = 0; i < 3; i++) {
      Face_handle n = f->neighbor(i);
      Edge ee(n, n->index( this->_tds.mirror_vertex(f,i) ));
      if ( !l.is_in_list(ee) ) {
	fit = get_faces(l, n, fmap, fit);
      }
    }
    return fit;
  }

  size_type count_faces(const List& l) const;

  void fill_hole(const Self& small_d, const Vertex_handle& v, const List& l,
		 std::map<Vertex_handle,Vertex_handle>& vmap);

  bool remove_first(const Vertex_handle& v);
  bool remove_second(const Vertex_handle& v);
  bool remove_third(const Vertex_handle& v);

  void compute_small_diagram(const Vertex_handle& v, Self& small_d) const;
  void compute_vertex_map(const Vertex_handle& v, const Self& small_d,
			  std::map<Vertex_handle,Vertex_handle>& vmap) const;
  void remove_degree_d_vertex(const Vertex_handle& v);

  bool remove_base(const Vertex_handle& v);

public:
  bool remove(const Vertex_handle& v);

protected:
  inline void unregister_input_site(const Point_handle& h)
  {
    Site_rep_2 rep(h, h, true);
    typename Input_sites_container::iterator it = isc_.find(rep);
    CGAL_assertion( it != isc_.end() );

    pc_.erase(h);
    isc_.erase(it);
  }

  inline void unregister_input_site(const Point_handle& h1,
				    const Point_handle& h2)
  {   
    Site_rep_2 rep(h1, h2, false);
    typename Input_sites_container::iterator it = isc_.find(rep);
    
    Site_rep_2 sym_rep(h2, h1, false);
    typename Input_sites_container::iterator sym_it = isc_.find(sym_rep);

    CGAL_assertion( it != isc_.end() || sym_it != isc_.end() );

    if ( it != isc_.end() ) { isc_.erase(it); }
    if ( sym_it != isc_.end() ) { isc_.erase(sym_it); }

    Site_rep_2 r1(h1, h1, true);
    if ( isc_.find(r1) == isc_.end() ) { isc_.insert(r1); }

    Site_rep_2 r2(h2, h2, true);
    if ( isc_.find(r2) == isc_.end() ) { isc_.insert(r2); }
  }

  inline Point_handle register_input_site(const Point_2& p)
  {
    std::pair<Point_handle,bool> it = pc_.insert(p);
    Site_rep_2 rep(it.first, it.first, true);
    isc_.insert( rep );
    return it.first;
  }

  inline
  Point_handle_pair register_input_site(const Point_2& p0, const Point_2& p1)
  {
    std::pair<Point_handle,bool> it1 = pc_.insert(p0);
    std::pair<Point_handle,bool> it2 = pc_.insert(p1);
    Site_rep_2 rep(it1.first, it2.first, false);
    isc_.insert( rep );
    return Point_handle_pair(it1.first, it2.first);
  }

  inline
  Point_handle_pair register_input_site(const Point_handle& h0,
					const Point_handle& h1)
  {
    CGAL_precondition( h0 != h1 );
    Site_rep_2 rep(h0, h1, false);
    isc_.insert( rep );
    return Point_handle_pair(h0, h1);
  }

  Vertex_handle  insert_first(const Storage_site_2& ss, const Point_2& p);
  Vertex_handle  insert_second(const Storage_site_2& ss, const Point_2& p);
  Vertex_handle  insert_third(const Storage_site_2& ss, const Point_2& p);
  Vertex_handle  insert_third(const Site_2& t, const Storage_site_2& ss);
  Vertex_handle  insert_third(const Storage_site_2& ss, Vertex_handle v0,
			      Vertex_handle v1);

  Vertex_handle insert_point(const Storage_site_2& ss, const Point_2& p,
			     Vertex_handle vnear);
  Vertex_handle insert_point(const Storage_site_2& ss,
			     const Site_2& t, Vertex_handle vnear);
  Vertex_handle insert_point2(const Storage_site_2& ss,
			      const Site_2& t, Vertex_handle vnear);

  Triple<Vertex_handle,Vertex_handle,Vertex_handle>
  insert_point_on_segment(const Storage_site_2& ss, const Site_2& t,
			  Vertex_handle v, const Tag_true&);

  Triple<Vertex_handle,Vertex_handle,Vertex_handle>
  insert_exact_point_on_segment(const Storage_site_2& ss, const Site_2& t,
				Vertex_handle v);

  Vertex_handle insert_segment(const Storage_site_2& ss, const Site_2& t,
			       Vertex_handle vnear);

  Vertex_handle insert_segment_interior(const Site_2& t,
					const Storage_site_2& ss,
					Vertex_handle vnear);

  template<class ITag>
  inline
  Vertex_handle insert_intersecting_segment(const Storage_site_2& ss,
					    const Site_2& t,
					    Vertex_handle v,
					    ITag tag) {
    return insert_intersecting_segment_with_tag(ss, t, v, tag);
  }

  Vertex_handle
  insert_intersecting_segment_with_tag(const Storage_site_2& ss,
				       const Site_2& t,
				       Vertex_handle v, Tag_false);

  Vertex_handle
  insert_intersecting_segment_with_tag(const Storage_site_2& ss,
				       const Site_2& t,
				       Vertex_handle v, Tag_true);



public:
  // NEAREST NEIGHBOR LOCATION
  //--------------------------
  inline Vertex_handle nearest_neighbor(const Point_2& p) const {
    return nearest_neighbor(Site_2::construct_site_2(p), Vertex_handle());
  }

  inline Vertex_handle nearest_neighbor(const Point_2& p,
					Vertex_handle vnear) const {
    return nearest_neighbor(Site_2::construct_site_2(p), vnear);
  }

protected:
  Vertex_handle nearest_neighbor(const Site_2& p,
				 Vertex_handle vnear) const;


protected:
  // I/O METHODS
  //------------
  typedef std::map<const_Point_handle,size_type,Point_handle_less_than>
  Point_handle_mapper;

  typedef std::vector<Point_handle> Point_handle_vector;

  void file_output(std::ostream&, const Storage_site_2&,
		   Point_handle_mapper&) const;

  void file_output(std::ostream&, Point_handle_mapper&,
		   bool print_point_container) const;

  void file_input(std::istream&, Storage_site_2&,
		  const Point_handle_vector&, const Tag_true&) const;
  void file_input(std::istream&, Storage_site_2&,
		  const Point_handle_vector&, const Tag_false&) const;
  void file_input(std::istream&, bool read_handle_vector,
		  Point_handle_vector&);

public:
  void file_input(std::istream& is) {
    Point_handle_vector P;
    file_input(is, true, P);
  }

  void file_output(std::ostream& os) const {
    Point_handle_mapper P;
    size_type inum = 0;
    for (const_Point_handle ph = pc_.begin(); ph != pc_.end(); ++ph) {
      P[ph] = inum++;
    }
    file_output(os, P, true);
  }

  template< class Stream >
  Stream& draw_dual(Stream& str) const
  {
    Finite_edges_iterator eit = finite_edges_begin();
    for (; eit != finite_edges_end(); ++eit) {
      draw_dual_edge(*eit, str);
    }
    return str;
  }

  template < class Stream > 
  Stream& draw_skeleton(Stream& str) const
  {
    Finite_edges_iterator eit = finite_edges_begin();
    for (; eit != finite_edges_end(); ++eit) {
      Site_2 p = eit->first->vertex(  cw(eit->second) )->site();
      Site_2 q = eit->first->vertex( ccw(eit->second) )->site();

      bool is_endpoint_of_seg =
	( p.is_segment() && q.is_point() &&
	  is_endpoint_of_segment(q, p) ) ||
	( p.is_point() && q.is_segment() &&
	  is_endpoint_of_segment(p, q) );

      if ( !is_endpoint_of_seg ) {
	draw_dual_edge(*eit, str);
      }
    }
    return str;
  }

  // MK: this has to be rewritten. all the checking must be done in
  // the geometric traits class.
  template< class Stream >
  Stream& draw_dual_edge(Edge e, Stream& str) const
  {
    CGAL_precondition( !is_infinite(e) );

    typename Geom_traits::Line_2              l;
    typename Geom_traits::Segment_2           s;
    typename Geom_traits::Ray_2               r;
    CGAL::Parabola_segment_2<Gt>              ps;

    Object o = primal(e);

    if (CGAL::assign(l, o))   str << l;
    if (CGAL::assign(s, o))   str << s; 
    if (CGAL::assign(r, o))   str << r;
    if (CGAL::assign(ps, o))  ps.draw(str);

    return str;
  }

  template< class Stream >
  inline
  Stream& draw_dual_edge(Edge_circulator ec, Stream& str) const {
    return draw_dual_edge(*ec, str);
  }

  template< class Stream >
  inline
  Stream& draw_dual_edge(Finite_edges_iterator eit, Stream& str) const {
    return draw_dual_edge(*eit, str);
  }

public:
  // VALIDITY CHECK
  //---------------
  bool is_valid(bool verbose = false, int level = 1) const;

public:
  // MISCELLANEOUS
  //--------------
  void clear() {
    DG::clear();
    pc_.clear();
    isc_.clear();
  }

  void swap(Segment_Delaunay_graph_2& sdg) {
    DG::swap(sdg);
    pc_.swap(sdg.pc_);
    isc_.swap(sdg.isc_);
  }

  //////////////////////////////////////////////////////////////////////
  // THE METHODS BELOW ARE LOCAL
  //////////////////////////////////////////////////////////////////////

protected:
  // THE COPY METHOD
  //------------------------------------------------------------------
  // used in the copy constructor and assignment operator

  Storage_site_2
  copy_storage_site(const Storage_site_2& ss_other,
		    Handle_map& hm, const Tag_false&);

  Storage_site_2
  copy_storage_site(const Storage_site_2& ss_other,
		    Handle_map& hm, const Tag_true&);

  void copy(Segment_Delaunay_graph_2& other);
  void copy(Segment_Delaunay_graph_2& other, Handle_map& hm);

protected:
  // HELPER METHODS FOR COMBINATORIAL OPERATIONS ON THE DATA STRUCTURE
  //------------------------------------------------------------------

  // getting the degree of a vertex
  inline
  typename Data_structure::size_type degree(const Vertex_handle& v) const {
    return this->_tds.degree(v);
  }

  // getting the symmetric edge
  inline Edge sym_edge(const Edge e) const {
    return sym_edge(e.first, e.second);
  }

  inline Edge sym_edge(const Face_handle& f, int i) const {
    Face_handle f_sym = f->neighbor(i);
    return Edge(  f_sym, f_sym->index( this->_tds.mirror_vertex(f, i) )  );
  }

  Edge flip(Face_handle& f, int i) {
    CGAL_precondition ( f != Face_handle() );
    CGAL_precondition (i == 0 || i == 1 || i == 2);
    CGAL_precondition( this->dimension()==2 ); 

    CGAL_precondition( f->vertex(i) != this->_tds.mirror_vertex(f, i) );

    this->_tds.flip(f, i);

    return Edge(f, ccw(i));
  }

  inline Edge flip(Edge e) {
    return flip(e.first, e.second);
  }

  inline bool is_degree_2(const Vertex_handle& v) const {
    Face_circulator fc = incident_faces(v);
    Face_circulator fc1 = fc;
    ++(++fc1);
    return ( fc == fc1 );
  }

  inline Vertex_handle insert_degree_2(Edge e) {
    return this->_tds.insert_degree_2(e.first,e.second);
  }

  inline Vertex_handle insert_degree_2(Edge e, const Storage_site_2& ss) {
    Vertex_handle v = insert_degree_2(e);
    v->set_site(ss);
    return v;
  }

  inline void remove_degree_2(Vertex_handle v) {
    CGAL_precondition( is_degree_2(v) );
    this->_tds.remove_degree_2(v);
  }

  inline void remove_degree_3(Vertex_handle v) {
    CGAL_precondition( degree(v) == 3 );
    this->_tds.remove_degree_3(v, Face_handle());
  }

  inline Vertex_handle create_vertex(const Storage_site_2& ss) {
    Vertex_handle v = this->_tds.create_vertex();
    v->set_site(ss);
    return v;
  }

  inline Vertex_handle create_vertex_dim_up(const Storage_site_2& ss) {
    Vertex_handle v = this->_tds.insert_dim_up(infinite_vertex());
    v->set_site(ss);
    return v;
  }

protected:
  // HELPER METHODS FOR CREATING STORAGE SITES
  //------------------------------------------
  inline
  Storage_site_2 split_storage_site(const Storage_site_2& ss0,
				    const Storage_site_2& ss1,
				    bool first)
  {
    // Split the first storage site which is a segment using the
    // second storage site which is an exact point
    // i denotes whether the first or second half is to be created
    CGAL_precondition( ss0.is_segment() && ss1.is_point() );

    return st_.construct_storage_site_2_object()(ss0, ss1, first);
  }

public:
  // METHODS FOR ACCESSING THE PRIMAL GRAPH
  //---------------------------------------
  // used primarily for visualization
  inline Point_2 primal(const Face_handle& f) const {
    return circumcenter(f);
  }

  Object primal(const Edge e) const;

  inline Object primal(const Edge_circulator& ec) const {
    return primal(*ec); 
  }

  inline Object primal(const Finite_edges_iterator& ei) const {
    return primal(*ei);
  }

protected:
  void print_error_message() const;

  void print_error_message(const Tag_false&) const
  {
    static int i = 0;

    if ( i == 0 ) {
      i++;
      std::cerr << "SDG::Insert aborted: intersecting segments found"
		<< std::endl;
    }
  }

  void print_error_message(const Tag_true&) const {}

  //protected:
public:
  // wrappers for constructions
  inline Point_2 circumcenter(const Face_handle& f) const {
    CGAL_precondition( this->dimension()==2 || !is_infinite(f) );
    return circumcenter(f->vertex(0)->site(),
			f->vertex(1)->site(),
			f->vertex(2)->site());
  }

  inline Point_2 circumcenter(const Site_2& t0, const Site_2& t1, 
			      const Site_2& t2) const {
    return
    geom_traits().construct_svd_vertex_2_object()(t0, t1, t2);
  }

protected:
  // HELPER METHODS FOR INSERTION
  //-----------------------------
  void initialize_conflict_region(const Face_handle& f, List& l);

  std::pair<Face_handle,Face_handle>
  find_faces_to_split(const Vertex_handle& v, const Site_2& t) const;

  void expand_conflict_region(const Face_handle& f, const Site_2& t,
			      const Storage_site_2& ss,
			      List& l, Face_map& fm,
			      std::map<Face_handle,Sign>& sign_map,
			      Triple<bool, Vertex_handle,
			      Arrangement_type>& vcross);

  Vertex_handle add_bogus_vertex(Edge e, List& l);
  Vertex_list   add_bogus_vertices(List& l);
  void          remove_bogus_vertices(Vertex_list& vl);

  void retriangulate_conflict_region(Vertex_handle v, List& l,
				     Face_map& fm);


protected:
  // TYPES AND ACCESS METHODS FOR VISUALIZATION
  //-------------------------------------------

  // types
  typedef
  CGAL_SEGMENT_DELAUNAY_GRAPH_2_NS::Construct_sdg_circle_2<Gt,Integral_domain_without_division_tag>
  Construct_sdg_circle_2;

  typedef
  CGAL_SEGMENT_DELAUNAY_GRAPH_2_NS::Construct_sdg_bisector_2<Gt,Integral_domain_without_division_tag>
  Construct_sdg_bisector_2;

  typedef
  CGAL_SEGMENT_DELAUNAY_GRAPH_2_NS::Construct_sdg_bisector_ray_2<Gt,Integral_domain_without_division_tag>
  Construct_sdg_bisector_ray_2;

  typedef
  CGAL_SEGMENT_DELAUNAY_GRAPH_2_NS::
  Construct_sdg_bisector_segment_2<Gt,Integral_domain_without_division_tag>
  Construct_sdg_bisector_segment_2;

  // access
  inline Construct_sdg_circle_2
  construct_sdg_circle_2_object() const{
    return Construct_sdg_circle_2();
  }

  inline Construct_sdg_bisector_2
  construct_sdg_bisector_2_object() const {
    return Construct_sdg_bisector_2();
  }

  inline Construct_sdg_bisector_ray_2
  construct_sdg_bisector_ray_2_object() const {
    return Construct_sdg_bisector_ray_2();
  }

  inline Construct_sdg_bisector_segment_2
  construct_sdg_bisector_segment_2_object() const { 
    return Construct_sdg_bisector_segment_2(); 
  }

protected:
  // WRAPPERS FOR GEOMETRIC PREDICATES
  //----------------------------------
  inline
  bool same_points(const Storage_site_2& p, const Storage_site_2& q) const {
    return geom_traits().equal_2_object()(p.site(), q.site());
  }

  inline
  bool same_segments(const Storage_site_2& t, Vertex_handle v) const {
    if ( is_infinite(v) ) { return false; }
    if ( t.is_point() || v->storage_site().is_point() ) { return false; }
    return same_segments(t.site(), v->site());
  }

  inline
  bool is_endpoint_of_segment(const Storage_site_2& p,
			      const Storage_site_2& s) const
  {
    CGAL_precondition( p.is_point() && s.is_segment() );
    return ( same_points(p, s.source_site()) ||
	     same_points(p, s.target_site()) );
  }

  inline
  bool is_degenerate_segment(const Storage_site_2& s) const {
    CGAL_precondition( s.is_segment() );
    return same_points(s.source_site(), s.target_site());
  }

  // returns:
  //   ON_POSITIVE_SIDE if q is closer to t1
  //   ON_NEGATIVE_SIDE if q is closer to t2
  //   ON_ORIENTED_BOUNDARY if q is on the bisector of t1 and t2
  inline
  Oriented_side side_of_bisector(const Storage_site_2 &t1,
				 const Storage_site_2 &t2,
				 const Storage_site_2 &q) const {
    return
      geom_traits().oriented_side_of_bisector_2_object()(t1.site(),
							 t2.site(),
							 q.site());
  }

  inline
  Sign incircle(const Storage_site_2 &t1, const Storage_site_2 &t2,
		const Storage_site_2 &t3, const Storage_site_2 &q) const {
    return geom_traits().vertex_conflict_2_object()(t1.site(),
						    t2.site(),
						    t3.site(),
						    q.site());
  }

  inline
  Sign incircle(const Storage_site_2 &t1, const Storage_site_2 &t2,
		const Storage_site_2 &q) const {
    return geom_traits().vertex_conflict_2_object()(t1.site(),
						    t2.site(),
						    q.site());
  }

  inline
  Sign incircle(const Face_handle& f, const Storage_site_2& q) const {
    return incircle(f, q.site());
  }

  inline
  bool finite_edge_interior(const Storage_site_2& t1,
			    const Storage_site_2& t2,
			    const Storage_site_2& t3,
			    const Storage_site_2& t4,
			    const Storage_site_2& q, Sign sgn) const {
    return
      geom_traits().finite_edge_interior_conflict_2_object()
      (t1.site(), t2.site(), t3.site(), t4.site(), q.site(), sgn);
  }

  inline
  bool finite_edge_interior(const Face_handle& f, int i,
			    const Storage_site_2& q, Sign sgn) const {
    CGAL_precondition( !is_infinite(f) &&
		       !is_infinite(f->neighbor(i)) );
    return finite_edge_interior( f->vertex( ccw(i) )->site(),
				 f->vertex(  cw(i) )->site(),
				 f->vertex(     i  )->site(),
				 this->_tds.mirror_vertex(f, i)->site(),
				 q.site(), sgn);
  }

  inline
  bool finite_edge_interior(const Storage_site_2& t1,
			    const Storage_site_2& t2,
			    const Storage_site_2& t3,
			    const Storage_site_2& q,
			    Sign sgn) const {
    return geom_traits().finite_edge_interior_conflict_2_object()(t1.site(),
								  t2.site(),
								  t3.site(),
								  q.site(),
								  sgn);
  }

  inline
  bool finite_edge_interior(const Storage_site_2& t1,
			    const Storage_site_2& t2,
			    const Storage_site_2& q,
			    Sign sgn) const {
    return
      geom_traits().finite_edge_interior_conflict_2_object()(t1.site(),
							     t2.site(),
							     q.site(),
							     sgn);
  }

  bool finite_edge_interior(const Face_handle& f, int i,
			    const Storage_site_2& p, Sign sgn,
			    int j) const {
    return finite_edge_interior(f, i, p.site(), sgn, j);
  }

  inline
  bool infinite_edge_interior(const Storage_site_2& t2,
			      const Storage_site_2& t3,
			      const Storage_site_2& t4,
			      const Storage_site_2& q, Sign sgn) const {
    return
      geom_traits().infinite_edge_interior_conflict_2_object()
      (t2.site(), t3.site(), t4.site(), q.site(), sgn);
  }

  inline
  bool infinite_edge_interior(const Face_handle& f, int i,
			      const Storage_site_2& q, Sign sgn) const
  {
    return infinite_edge_interior(f, i, q, sgn);
  }

  inline
  bool edge_interior(const Face_handle& f, int i,
		     const Storage_site_2& t, Sign sgn) const {
    return edge_interior(f, i, t.site(), sgn);
  }

  inline
  bool edge_interior(const Edge& e,
		     const Storage_site_2& t, Sign sgn) const {
    return edge_interior(e.first, e.second, t, sgn);
  }

  inline Arrangement_type
  arrangement_type(const Storage_site_2& t, const Vertex_handle& v) const {
    if ( is_infinite(v) ) { return AT2::DISJOINT; }
    return arrangement_type(t, v->storage_site());
  }

  inline
  Arrangement_type arrangement_type(const Storage_site_2& p,
				    const Storage_site_2& q) const {
    return arrangement_type(p.site(), q.site());
  }

  inline
  bool are_parallel(const Storage_site_2& p, const Storage_site_2& q) const {
    return geom_traits().are_parallel_2_object()(p.site(), q.site());
  }

  inline Oriented_side
  oriented_side(const Storage_site_2& q, const Storage_site_2& supp,
		const Storage_site_2& p) const
  {
    CGAL_precondition( q.is_point() && supp.is_segment() && p.is_point() );
    return
      geom_traits().oriented_side_2_object()(q.site(), supp.site(), p.site());
  }

  inline Oriented_side
  oriented_side(const Storage_site_2& s1, const Storage_site_2& s2,
		const Storage_site_2& s3, const Storage_site_2& supp,
		const Storage_site_2& p) const {
    CGAL_precondition( supp.is_segment() && p.is_point() );
    return geom_traits().oriented_side_2_object()(s1.site(),
						  s2.site(),
						  s3.site(),
						  supp.site(), p.site());
  }


  //-------

  inline
  bool same_points(const Site_2& p, const Site_2& q) const {
    return geom_traits().equal_2_object()(p, q);
  }

  inline
  bool same_segments(const Site_2& t, Vertex_handle v) const {
    if ( is_infinite(v) ) { return false; }
    if ( t.is_point() || v->site().is_point() ) { return false; }
    return same_segments(t, v->site());
  }

  inline
  bool same_segments(const Site_2& p, const Site_2& q) const {
    CGAL_precondition( p.is_segment() && q.is_segment() );

    return
      (same_points(p.source_site(), q.source_site()) &&
       same_points(p.target_site(), q.target_site())) ||
      (same_points(p.source_site(), q.target_site()) &&
       same_points(p.target_site(), q.source_site()));
  }

  inline
  bool is_endpoint_of_segment(const Site_2& p, const Site_2& s) const
  {
    CGAL_precondition( p.is_point() && s.is_segment() );
    return ( same_points(p, s.source_site()) ||
	     same_points(p, s.target_site()) );
  }

  inline
  bool is_degenerate_segment(const Site_2& s) const {
    CGAL_precondition( s.is_segment() );
    return same_points(s.source_site(), s.target_site());
  }

  // returns:
  //   ON_POSITIVE_SIDE if q is closer to t1
  //   ON_NEGATIVE_SIDE if q is closer to t2
  //   ON_ORIENTED_BOUNDARY if q is on the bisector of t1 and t2
  inline
  Oriented_side side_of_bisector(const Site_2 &t1, const Site_2 &t2,
				 const Site_2 &q) const {
    return geom_traits().oriented_side_of_bisector_2_object()(t1, t2, q);
  }

  inline
  Sign incircle(const Site_2 &t1, const Site_2 &t2,
		const Site_2 &t3, const Site_2 &q) const {
    return geom_traits().vertex_conflict_2_object()(t1, t2, t3, q);
  }

  inline
  Sign incircle(const Site_2 &t1, const Site_2 &t2,
		const Site_2 &q) const {
    return geom_traits().vertex_conflict_2_object()(t1, t2, q);
  }

  inline
  Sign incircle(const Face_handle& f, const Site_2& q) const;

  inline
  Sign incircle(const Vertex_handle& v0, const Vertex_handle& v1,
		const Vertex_handle& v) const {
    CGAL_precondition( !is_infinite(v0) && !is_infinite(v1)
		       && !is_infinite(v) );

    return incircle( v0->site(), v1->site(), v->site());
  }

  Sign incircle(const Vertex_handle& v0, const Vertex_handle& v1,
		const Vertex_handle& v2, const Vertex_handle& v) const;

  inline
  bool finite_edge_interior(const Site_2& t1, const Site_2& t2,
			    const Site_2& t3, const Site_2& t4,
			    const Site_2& q,  Sign sgn) const {
    return
      geom_traits().finite_edge_interior_conflict_2_object()
      (t1,t2,t3,t4,q,sgn);
  }

  inline
  bool finite_edge_interior(const Face_handle& f, int i,
			    const Site_2& q, Sign sgn) const {
    CGAL_precondition( !is_infinite(f) &&
		       !is_infinite(f->neighbor(i)) );
    return finite_edge_interior( f->vertex( ccw(i) )->site(),
				 f->vertex(  cw(i) )->site(),
				 f->vertex(     i  )->site(),
				 this->_tds.mirror_vertex(f, i)->site(),
				 q, sgn);
  }

  inline
  bool finite_edge_interior(const Vertex_handle& v1, const Vertex_handle& v2,
			    const Vertex_handle& v3, const Vertex_handle& v4,
			    const Vertex_handle& v, Sign sgn) const {
    CGAL_precondition( !is_infinite(v1) && !is_infinite(v2) &&
		       !is_infinite(v3) && !is_infinite(v4) &&
		       !is_infinite(v) );
    return finite_edge_interior( v1->site(), v2->site(),
				 v3->site(), v4->site(),
				 v->site(), sgn);
  }

  inline
  bool finite_edge_interior(const Site_2& t1, const Site_2& t2,
			    const Site_2& t3, const Site_2& q,
			    Sign sgn) const {
    return
    geom_traits().finite_edge_interior_conflict_2_object()(t1,t2,t3,q,sgn);
  }

  inline
  bool finite_edge_interior(const Site_2& t1, const Site_2& t2,
			    const Site_2& q,  Sign sgn) const {
    return
    geom_traits().finite_edge_interior_conflict_2_object()(t1,t2,q,sgn);
  }

  bool finite_edge_interior(const Face_handle& f, int i,
			    const Site_2& p, Sign sgn, int) const;

  bool finite_edge_interior(const Vertex_handle& v1, const Vertex_handle& v2,
			    const Vertex_handle& v3, const Vertex_handle& v4,
			    const Vertex_handle& v, Sign, int) const;

  inline
  bool infinite_edge_interior(const Site_2& t2, const Site_2& t3,
			      const Site_2& t4, const Site_2& q,
			      Sign sgn) const {
    return
      geom_traits().infinite_edge_interior_conflict_2_object()
      (t2,t3,t4,q,sgn);
  }


  bool infinite_edge_interior(const Face_handle& f, int i,
			      const Site_2& q, Sign sgn) const;

  bool infinite_edge_interior(const Vertex_handle& v1,
			      const Vertex_handle& v2,
			      const Vertex_handle& v3,
			      const Vertex_handle& v4,
			      const Vertex_handle& v,
			      Sign sgn) const;

  bool edge_interior(const Face_handle& f, int i,
		     const Site_2& t, Sign sgn) const;

  bool edge_interior(const Edge& e,
		     const Site_2& t, Sign sgn) const {
    return edge_interior(e.first, e.second, t, sgn);
  }

  bool edge_interior(const Vertex_handle& v1,
		     const Vertex_handle& v2,
		     const Vertex_handle& v3,
		     const Vertex_handle& v4,
		     const Vertex_handle& v,
		     Sign sgn) const;

  inline Arrangement_type
  arrangement_type(const Site_2& t, const Vertex_handle& v) const {
    if ( is_infinite(v) ) { return AT2::DISJOINT; }
    return arrangement_type(t, v->site());
  }

  Arrangement_type arrangement_type(const Site_2& p, const Site_2& q) const;

  inline
  bool are_parallel(const Site_2& p, const Site_2& q) const {
    return geom_traits().are_parallel_2_object()(p, q);
  }

  inline Oriented_side
  oriented_side(const Site_2& q, const Site_2& supp, const Site_2& p) const
  {
    CGAL_precondition( q.is_point() && supp.is_segment() && p.is_point() );
    return geom_traits().oriented_side_2_object()(q, supp, p);
  }

  inline Oriented_side
  oriented_side(const Site_2& s1, const Site_2& s2, const Site_2& s3,
		const Site_2& supp, const Site_2& p) const {
    CGAL_precondition( supp.is_segment() && p.is_point() );
    return geom_traits().oriented_side_2_object()(s1, s2, s3, supp, p);
  }

  bool is_degenerate_edge(const Site_2& p1,
			  const Site_2& p2,
			  const Site_2& p3,
			  const Site_2& p4) const {
    return geom_traits().is_degenerate_edge_2_object()
      (p1, p2, p3, p4);
  }

  bool is_degenerate_edge(const Vertex_handle& v1,
			  const Vertex_handle& v2,
			  const Vertex_handle& v3,
			  const Vertex_handle& v4) const {
    CGAL_precondition( !is_infinite(v1) && !is_infinite(v2) &&
		       !is_infinite(v3) && !is_infinite(v4) );

    return is_degenerate_edge(v1->site(), v2->site(),
			      v3->site(), v4->site());
  }

  bool is_degenerate_edge(const Face_handle& f, int i) const {
    Vertex_handle v1 = f->vertex( ccw(i) );
    Vertex_handle v2 = f->vertex(  cw(i) );
    Vertex_handle v3 = f->vertex(     i  );
    Vertex_handle v4 = this->_tds.mirror_vertex(f, i);

    return is_degenerate_edge(v1, v2, v3, v4);
  }

  bool is_degenerate_edge(const Edge& e) const {
    return is_degenerate_edge(e.first, e.second);
  }

  Vertex_handle first_endpoint_of_segment(const Vertex_handle& v) const;
  Vertex_handle second_endpoint_of_segment(const Vertex_handle& v) const;

}; // Segment_Delaunay_graph_2


template<class Gt, class D_S, class LTag>
std::istream& operator>>(std::istream& is,
			 Segment_Delaunay_graph_2<Gt,D_S,LTag>& sdg)
{
  sdg.file_input(is);
  return is;
}

template<class Gt, class D_S, class LTag>
std::ostream& operator<<(std::ostream& os,
			 const Segment_Delaunay_graph_2<Gt,D_S,LTag>& sdg)
{
  sdg.file_output(os);
  return os;
}

CGAL_END_NAMESPACE


#include <CGAL/Segment_Delaunay_graph_2/Segment_Delaunay_graph_2_impl.h>


#endif // CGAL_SEGMENT_DELAUNAY_GRAPH_2_H