1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
// Copyright (c) 1999,2007 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.5-branch/Number_types/include/CGAL/double.h $
// $Id: double.h 44911 2008-08-12 13:09:51Z spion $
//
//
// Author(s) : Geert-Jan Giezeman, Michael Hemmer
#ifndef CGAL_DOUBLE_H
#define CGAL_DOUBLE_H
#include <CGAL/number_type_basic.h>
#include <utility>
#include <cmath>
#include <math.h> // for nextafter
#include <limits>
#ifdef _MSC_VER
#include <cfloat>
#endif
#ifdef CGAL_CFG_IEEE_754_BUG
# include <CGAL/IEEE_754_unions.h>
#endif
CGAL_BEGIN_NAMESPACE
#ifdef CGAL_CFG_IEEE_754_BUG
#define CGAL_EXPONENT_DOUBLE_MASK 0x7ff00000
#define CGAL_MANTISSA_DOUBLE_MASK 0x000fffff
inline
bool
is_finite_by_mask_double(unsigned int h)
{
unsigned int e = h & CGAL_EXPONENT_DOUBLE_MASK;
return ( ( e ^ CGAL_EXPONENT_DOUBLE_MASK ) != 0 );
}
inline
bool
is_nan_by_mask_double(unsigned int h, unsigned int l)
{
if ( is_finite_by_mask_double(h) )
return false;
return (( h & CGAL_MANTISSA_DOUBLE_MASK ) != 0) || (( l & 0xffffffff ) != 0);
}
template<>
class Is_valid< double >
: public std::unary_function< double, bool > {
public :
bool operator()( const double& x ) const{
double d = x;
IEEE_754_double* p = reinterpret_cast<IEEE_754_double*>(&d);
return ! ( is_nan_by_mask_double( p->c.H, p->c.L ));
}
};
#else
template<>
class Is_valid< double >
: public std::unary_function< double, bool > {
public :
bool operator()( const double& x ) const {
#ifdef _MSC_VER
return ! _isnan(x);
#else
return (x == x);
#endif
}
};
#endif
template <> class Algebraic_structure_traits< double >
: public Algebraic_structure_traits_base< double,
Field_with_kth_root_tag > {
public:
typedef Tag_false Is_exact;
typedef Tag_true Is_numerical_sensitive;
class Sqrt
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return std::sqrt( x );
}
};
class Kth_root
: public std::binary_function<int, Type, Type> {
public:
Type operator()( int k,
const Type& x) const {
CGAL_precondition_msg( k > 0, "'k' must be positive for k-th roots");
return std::pow(x, 1.0 / double(k));
}
};
};
template <> class Real_embeddable_traits< double >
: public INTERN_RET::Real_embeddable_traits_base< double , CGAL::Tag_true> {
public:
// GCC is faster with std::fabs().
#ifdef __GNUG__
class Abs
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return std::fabs( x );
}
};
#endif
// Is_finite depends on platform
class Is_finite
: public std::unary_function< Type, bool > {
public :
bool operator()( const Type& x ) const {
#ifdef CGAL_CFG_IEEE_754_BUG
Type d = x;
IEEE_754_double* p = reinterpret_cast<IEEE_754_double*>(&d);
return is_finite_by_mask_double( p->c.H );
#elif defined CGAL_CFG_NUMERIC_LIMITS_BUG
return (x == x) && (is_valid(x-x));
#else
return (x != std::numeric_limits<Type>::infinity())
&& (-x != std::numeric_limits<Type>::infinity())
&& is_valid(x);
#endif
}
};
};
inline
double
nextafter(double d1, double d2)
{
#ifdef CGAL_CFG_NO_NEXTAFTER
return _nextafter(d1, d2); // works at least for VC++-7.1
#else
return ::nextafter(d1,d2);
#endif
}
inline
bool
is_integer(double d)
{
return CGAL::is_finite(d) && (std::ceil(d) == d);
}
// Returns a pair of integers <num,den> such that d == num/den.
inline
std::pair<double, double>
split_numerator_denominator(double d)
{
// Note that it could probably be optimized.
double num = d;
double den = 1.0;
while (std::ceil(num) != num)
{
num *= 2.0;
den *= 2.0;
}
CGAL_postcondition(d == num/den);
return std::make_pair(num, den);
}
CGAL_END_NAMESPACE
#endif // CGAL_DOUBLE_H
|