File: linear_least_squares_fitting_rectangles_2.h

package info (click to toggle)
cgal 3.6.1-2
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 62,184 kB
  • ctags: 95,782
  • sloc: cpp: 453,758; ansic: 96,821; sh: 226; makefile: 120; xml: 2
file content (229 lines) | stat: -rw-r--r-- 8,114 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// Copyright (c) 2005  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://gankit@scm.gforge.inria.fr/svn/cgal/trunk/Principal_component_analysis/include/CGAL/linear_least_squares_fitting_rectangles_2.h $
// $Id: linear_least_squares_fitting_2.h 37882 2007-04-03 15:15:30Z spion $
//
// Author(s) : Pierre Alliez and Sylvain Pion and Ankit Gupta

#ifndef CGAL_LINEAR_LEAST_SQUARES_FITTING_RECTANGLES_2_H
#define CGAL_LINEAR_LEAST_SQUARES_FITTING_RECTANGLES_2_H

#include <CGAL/basic.h>
#include <CGAL/Object.h>
#include <CGAL/centroid.h>
#include <CGAL/eigen_2.h>
#include <CGAL/eigen.h>
#include <CGAL/Linear_algebraCd.h>
#include <CGAL/PCA_util.h>

#include <iterator>
#include <vector>
#include <cmath>

CGAL_BEGIN_NAMESPACE

namespace internal {
// Fits a line to a 2D rectangle set.
// Returns a fitting quality (1 - lambda_min/lambda_max):
//  1 is best  (zero variance orthogonally to the fitting line);
//  0 is worst (isotropic case, returns a line with horizontal
//              direction by default)

template < typename InputIterator, typename K >
typename K::FT
linear_least_squares_fitting_2(InputIterator first,
                               InputIterator beyond, 
                               typename K::Line_2& line,   // best fit line
                               typename K::Point_2& c,     // centroid
                               const typename K::Iso_rectangle_2*,// used for indirection
                               const K&,                   // kernel
			                         const CGAL::Dimension_tag<2>& tag)
{
  // types
  typedef typename K::FT       FT;
  typedef typename K::Line_2   Line;
  typedef typename K::Point_2  Point;
  typedef typename K::Vector_2 Vector;
  typedef typename K::Iso_rectangle_2 Iso_rectangle;
  typedef typename CGAL::Linear_algebraCd<FT> LA;
  typedef typename LA::Matrix Matrix;
  typedef typename K::Segment_2         Segment_2;

  // precondition: at least one element in the container.
  CGAL_precondition(first != beyond);

  // compute centroid
  c = centroid(first,beyond,K(),tag);

  // assemble covariance matrix as a semi-definite matrix. 
  // Matrix numbering:
  // 0
  // 1 2
  //Final combined covariance matrix for all rectangles and their combined mass
  FT mass = 0.0;
  FT covariance[3] = {0.0,0.0,0.0};

  // assemble 2nd order moment about the origin.  
  FT temp[4] = {1/3.0, 0.25,
		0.25,  1/3.0};
  Matrix moment = init_matrix<K>(2,temp);

  for(InputIterator it = first;
      it != beyond;
      it++)
  {
    // Now for each rectangle, construct the 2nd order moment about the origin.
    // assemble the transformation matrix.
    const Iso_rectangle& t = *it;

    // defined for convenience.
    // FT example = CGAL::to_double(t[0].x());
    FT x0 = t.xmin();
    FT y0 = t.ymin();
    FT x1 = t.xmax();
    FT y2 = t.ymax();

    FT delta[4] = {x1-x0, 0.0, 
		   0.0, y2-y0};

    Matrix transformation = init_matrix<K>(2,delta);
    FT area = (x1-x0)*(y2-y0);

    CGAL_assertion(area != 0.0);

    // Find the 2nd order moment for the rectangle wrt to the origin by an affine transformation.
    
    // Transform the standard 2nd order moment using the transformation matrix
    transformation = area * transformation * moment * LA::transpose(transformation);
    
    // Translate the 2nd order moment to the center of the rectangle.
    FT xav0 = (x1-x0)/2.0;
    FT yav0 = (y2-y0)/2.0;
    // and add to covariance matrix
    covariance[0] += transformation[0][0] + area * (x0*xav0*2 + x0*x0);
    covariance[1] += transformation[0][1] + area * (x0*yav0 + xav0*y0 + x0*y0);
    covariance[2] += transformation[1][1] + area * (y0*yav0*2 + y0*y0);

    mass += area;
  }

  // Translate the 2nd order moment calculated about the origin to
  // the center of mass to get the covariance.
  covariance[0] += mass * (-1.0 * c.x() * c.x());
  covariance[1] += mass * (-1.0 * c.x() * c.y());
  covariance[2] += mass * (-1.0 * c.y() * c.y());

  // solve for eigenvalues and eigenvectors.
  // eigen values are sorted in descending order, 
  // eigen vectors are sorted in accordance.
  std::pair<FT,FT> eigen_values;
  std::pair<Vector,Vector> eigen_vectors;
  FT eigen_vectors1[4];
  FT eigen_values1[2];
  eigen_symmetric<FT>(covariance,2, eigen_vectors1, eigen_values1);
  eigen_values = std::make_pair(eigen_values1[0],eigen_values1[1]);
  eigen_vectors = std::make_pair(Vector(eigen_vectors1[0],eigen_vectors1[1]),Vector(eigen_vectors1[2],eigen_vectors1[3]));

  // check unicity and build fitting line accordingly
  if(eigen_values.first != eigen_values.second)
  {
    // regular case
    line = Line(c, eigen_vectors.first);
    return (FT)1.0 - eigen_values.second / eigen_values.first;
  } 
  else
  {
    // isotropic case (infinite number of directions)
    // by default: assemble a line that goes through 
    // the centroid and with a default horizontal vector.
    line = Line(c, Vector(1.0, 0.0));
    return (FT)0.0;
  } 
} // end linear_least_squares_fitting_2 for rectangle set with 2D tag

template < typename InputIterator, typename K >
typename K::FT
linear_least_squares_fitting_2(InputIterator first,
                               InputIterator beyond, 
                               typename K::Line_2& line,   // best fit line
                               typename K::Point_2& c,     // centroid
                               const typename K::Iso_rectangle_2*,// used for indirection
                               const K&,                   // kernel
			                         const CGAL::Dimension_tag<1>& tag)
{
  // types
  typedef typename K::Iso_rectangle_2 Iso_rectangle;
  typedef typename K::Segment_2         Segment_2;

  // precondition: at least one element in the container.
  CGAL_precondition(first != beyond);

  std::list<Segment_2> segments;
  
  for(InputIterator it = first;
      it != beyond;
      it++)
  {
    const Iso_rectangle& t = *it;
    segments.push_back(Segment_2(t[0],t[1]));
    segments.push_back(Segment_2(t[1],t[2]));
    segments.push_back(Segment_2(t[2],t[3]));      
    segments.push_back(Segment_2(t[3],t[0]));      
  }    

  return linear_least_squares_fitting_2(segments.begin(),segments.end(),line,c,K(),tag);

} // end linear_least_squares_fitting_2 for rectangle set with 1D tag


template < typename InputIterator,
           typename K >
typename K::FT
linear_least_squares_fitting_2(InputIterator first,
                               InputIterator beyond, 
                               typename K::Line_2& line,   // best fit line
                               typename K::Point_2& c,     // centroid
                               const typename K::Iso_rectangle_2*,// used for indirection
                               const K&,                   // kernel
			                         const CGAL::Dimension_tag<0>& tag)
{
  // types
  typedef typename K::Iso_rectangle_2 Iso_rectangle;
  typedef typename K::Point_2         Point_2;

  // precondition: at least one element in the container.
  CGAL_precondition(first != beyond);

  std::list<Point_2> points;
  
  for(InputIterator it = first;
      it != beyond;
      it++)
  {
    const Iso_rectangle& t = *it;
    points.push_back(Point_2(t[0]));
    points.push_back(Point_2(t[1]));
    points.push_back(Point_2(t[2]));      
    points.push_back(Point_2(t[3]));      
  }    

  return linear_least_squares_fitting_2(points.begin(),points.end(),line,c,K(),tag);

} // end linear_least_squares_fitting_2 for rectangle set with 0D tag

} // end namespace internal

CGAL_END_NAMESPACE

#endif // CGAL_LINEAR_LEAST_SQUARES_FITTING_RECTANGLES_2_H