1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
// Copyright (c) 2005 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you may redistribute it under
// the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://gankit@scm.gforge.inria.fr/svn/cgal/trunk/Principal_component_analysis/include/CGAL/linear_least_squares_fitting_rectangles_2.h $
// $Id: linear_least_squares_fitting_2.h 37882 2007-04-03 15:15:30Z spion $
//
// Author(s) : Pierre Alliez and Sylvain Pion and Ankit Gupta
#ifndef CGAL_LINEAR_LEAST_SQUARES_FITTING_RECTANGLES_2_H
#define CGAL_LINEAR_LEAST_SQUARES_FITTING_RECTANGLES_2_H
#include <CGAL/basic.h>
#include <CGAL/Object.h>
#include <CGAL/centroid.h>
#include <CGAL/eigen_2.h>
#include <CGAL/eigen.h>
#include <CGAL/Linear_algebraCd.h>
#include <CGAL/PCA_util.h>
#include <iterator>
#include <vector>
#include <cmath>
CGAL_BEGIN_NAMESPACE
namespace internal {
// Fits a line to a 2D rectangle set.
// Returns a fitting quality (1 - lambda_min/lambda_max):
// 1 is best (zero variance orthogonally to the fitting line);
// 0 is worst (isotropic case, returns a line with horizontal
// direction by default)
template < typename InputIterator, typename K >
typename K::FT
linear_least_squares_fitting_2(InputIterator first,
InputIterator beyond,
typename K::Line_2& line, // best fit line
typename K::Point_2& c, // centroid
const typename K::Iso_rectangle_2*,// used for indirection
const K&, // kernel
const CGAL::Dimension_tag<2>& tag)
{
// types
typedef typename K::FT FT;
typedef typename K::Line_2 Line;
typedef typename K::Point_2 Point;
typedef typename K::Vector_2 Vector;
typedef typename K::Iso_rectangle_2 Iso_rectangle;
typedef typename CGAL::Linear_algebraCd<FT> LA;
typedef typename LA::Matrix Matrix;
typedef typename K::Segment_2 Segment_2;
// precondition: at least one element in the container.
CGAL_precondition(first != beyond);
// compute centroid
c = centroid(first,beyond,K(),tag);
// assemble covariance matrix as a semi-definite matrix.
// Matrix numbering:
// 0
// 1 2
//Final combined covariance matrix for all rectangles and their combined mass
FT mass = 0.0;
FT covariance[3] = {0.0,0.0,0.0};
// assemble 2nd order moment about the origin.
FT temp[4] = {1/3.0, 0.25,
0.25, 1/3.0};
Matrix moment = init_matrix<K>(2,temp);
for(InputIterator it = first;
it != beyond;
it++)
{
// Now for each rectangle, construct the 2nd order moment about the origin.
// assemble the transformation matrix.
const Iso_rectangle& t = *it;
// defined for convenience.
// FT example = CGAL::to_double(t[0].x());
FT x0 = t.xmin();
FT y0 = t.ymin();
FT x1 = t.xmax();
FT y2 = t.ymax();
FT delta[4] = {x1-x0, 0.0,
0.0, y2-y0};
Matrix transformation = init_matrix<K>(2,delta);
FT area = (x1-x0)*(y2-y0);
CGAL_assertion(area != 0.0);
// Find the 2nd order moment for the rectangle wrt to the origin by an affine transformation.
// Transform the standard 2nd order moment using the transformation matrix
transformation = area * transformation * moment * LA::transpose(transformation);
// Translate the 2nd order moment to the center of the rectangle.
FT xav0 = (x1-x0)/2.0;
FT yav0 = (y2-y0)/2.0;
// and add to covariance matrix
covariance[0] += transformation[0][0] + area * (x0*xav0*2 + x0*x0);
covariance[1] += transformation[0][1] + area * (x0*yav0 + xav0*y0 + x0*y0);
covariance[2] += transformation[1][1] + area * (y0*yav0*2 + y0*y0);
mass += area;
}
// Translate the 2nd order moment calculated about the origin to
// the center of mass to get the covariance.
covariance[0] += mass * (-1.0 * c.x() * c.x());
covariance[1] += mass * (-1.0 * c.x() * c.y());
covariance[2] += mass * (-1.0 * c.y() * c.y());
// solve for eigenvalues and eigenvectors.
// eigen values are sorted in descending order,
// eigen vectors are sorted in accordance.
std::pair<FT,FT> eigen_values;
std::pair<Vector,Vector> eigen_vectors;
FT eigen_vectors1[4];
FT eigen_values1[2];
eigen_symmetric<FT>(covariance,2, eigen_vectors1, eigen_values1);
eigen_values = std::make_pair(eigen_values1[0],eigen_values1[1]);
eigen_vectors = std::make_pair(Vector(eigen_vectors1[0],eigen_vectors1[1]),Vector(eigen_vectors1[2],eigen_vectors1[3]));
// check unicity and build fitting line accordingly
if(eigen_values.first != eigen_values.second)
{
// regular case
line = Line(c, eigen_vectors.first);
return (FT)1.0 - eigen_values.second / eigen_values.first;
}
else
{
// isotropic case (infinite number of directions)
// by default: assemble a line that goes through
// the centroid and with a default horizontal vector.
line = Line(c, Vector(1.0, 0.0));
return (FT)0.0;
}
} // end linear_least_squares_fitting_2 for rectangle set with 2D tag
template < typename InputIterator, typename K >
typename K::FT
linear_least_squares_fitting_2(InputIterator first,
InputIterator beyond,
typename K::Line_2& line, // best fit line
typename K::Point_2& c, // centroid
const typename K::Iso_rectangle_2*,// used for indirection
const K&, // kernel
const CGAL::Dimension_tag<1>& tag)
{
// types
typedef typename K::Iso_rectangle_2 Iso_rectangle;
typedef typename K::Segment_2 Segment_2;
// precondition: at least one element in the container.
CGAL_precondition(first != beyond);
std::list<Segment_2> segments;
for(InputIterator it = first;
it != beyond;
it++)
{
const Iso_rectangle& t = *it;
segments.push_back(Segment_2(t[0],t[1]));
segments.push_back(Segment_2(t[1],t[2]));
segments.push_back(Segment_2(t[2],t[3]));
segments.push_back(Segment_2(t[3],t[0]));
}
return linear_least_squares_fitting_2(segments.begin(),segments.end(),line,c,K(),tag);
} // end linear_least_squares_fitting_2 for rectangle set with 1D tag
template < typename InputIterator,
typename K >
typename K::FT
linear_least_squares_fitting_2(InputIterator first,
InputIterator beyond,
typename K::Line_2& line, // best fit line
typename K::Point_2& c, // centroid
const typename K::Iso_rectangle_2*,// used for indirection
const K&, // kernel
const CGAL::Dimension_tag<0>& tag)
{
// types
typedef typename K::Iso_rectangle_2 Iso_rectangle;
typedef typename K::Point_2 Point_2;
// precondition: at least one element in the container.
CGAL_precondition(first != beyond);
std::list<Point_2> points;
for(InputIterator it = first;
it != beyond;
it++)
{
const Iso_rectangle& t = *it;
points.push_back(Point_2(t[0]));
points.push_back(Point_2(t[1]));
points.push_back(Point_2(t[2]));
points.push_back(Point_2(t[3]));
}
return linear_least_squares_fitting_2(points.begin(),points.end(),line,c,K(),tag);
} // end linear_least_squares_fitting_2 for rectangle set with 0D tag
} // end namespace internal
CGAL_END_NAMESPACE
#endif // CGAL_LINEAR_LEAST_SQUARES_FITTING_RECTANGLES_2_H
|