1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
#include <iostream>
#include <boost/iterator.hpp>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits.h>
typedef CGAL::Simple_cartesian<double> K;
// The points are stored in a flat array of doubles
// The triangles are stored in a flat array of indices
// referring to an array of coordinates: three consecutive
// coordinates represent a point, and three consecutive
// indices represent a triangle.
typedef size_t* Point_index_iterator;
// Let us now define the iterator on triangles that the tree needs:
class Triangle_iterator
: public boost::iterator_adaptor<
Triangle_iterator // Derived
, Point_index_iterator // Base
, boost::use_default // Value
, boost::forward_traversal_tag // CategoryOrTraversal
>
{
public:
Triangle_iterator()
: Triangle_iterator::iterator_adaptor_() {}
explicit Triangle_iterator(Point_index_iterator p)
: Triangle_iterator::iterator_adaptor_(p) {}
private:
friend class boost::iterator_core_access;
void increment() { this->base_reference() += 3; }
};
// The following primitive provides the conversion facilities between
// my own triangle and point types and the CGAL ones
struct My_triangle_primitive {
public:
typedef Triangle_iterator Id;
// the CGAL types returned
typedef K::Point_3 Point;
typedef K::Triangle_3 Datum;
// a static pointer to the vector containing the points
// is needed to build the triangles on the fly:
static const double* point_container;
private:
Id m_it; // this is what the AABB tree stores internally
public:
My_triangle_primitive() {} // default constructor needed
// the following constructor is the one that receives the iterators from the
// iterator range given as input to the AABB_tree
My_triangle_primitive(Triangle_iterator a)
: m_it(a) {}
Id id() const { return m_it; }
// on the fly conversion from the internal data to the CGAL types
Datum datum() const
{
Point_index_iterator p_it = m_it.base();
Point p(*(point_container + 3 * (*p_it)),
*(point_container + 3 * (*p_it) + 1),
*(point_container + 3 * (*p_it) + 2) );
++p_it;
Point q(*(point_container + 3 * (*p_it)),
*(point_container + 3 * (*p_it) + 1),
*(point_container + 3 * (*p_it) + 2));
++p_it;
Point r(*(point_container + 3 * (*p_it)),
*(point_container + 3 * (*p_it) + 1),
*(point_container + 3 * (*p_it) + 2));
return Datum(p, q, r); // assembles triangle from three points
}
// one point which must be on the primitive
Point reference_point() const
{
return Point(*(point_container + 3 * (*m_it)),
*(point_container + 3 * (*m_it) + 1),
*(point_container + 3 * (*m_it) + 2));
}
};
// types
typedef CGAL::AABB_traits<K, My_triangle_primitive> My_AABB_traits;
typedef CGAL::AABB_tree<My_AABB_traits> Tree;
const double* My_triangle_primitive::point_container = 0;
int main()
{
// generates point set
double points[12];
My_triangle_primitive::point_container = points;
points[0] = 1.0; points[1] = 0.0; points[2] = 0.0;
points[3] = 0.0; points[4] = 1.0; points[5] = 0.0;
points[6] = 0.0; points[7] = 0.0; points[8] = 1.0;
points[9] = 0.0; points[10] = 0.0; points[11] = 0.0;
// generates indexed triangle set
size_t triangles[9];
triangles[0] = 0; triangles[1] = 1; triangles[2] = 2;
triangles[3] = 0; triangles[4] = 1; triangles[5] = 3;
triangles[6] = 0; triangles[7] = 3; triangles[8] = 2;
// constructs AABB tree
Tree tree(Triangle_iterator(triangles),
Triangle_iterator(triangles+9));
// counts #intersections
K::Ray_3 ray_query(K::Point_3(0.2, 0.2, 0.2), K::Point_3(0.0, 1.0, 0.0));
std::cout << tree.number_of_intersected_primitives(ray_query)
<< " intersections(s) with ray query" << std::endl;
// computes closest point
K::Point_3 point_query(2.0, 2.0, 2.0);
K::Point_3 closest_point = tree.closest_point(point_query);
std::cout << "closest point to " << point_query << " is: " << closest_point.x() << " " << closest_point.y() << " " << closest_point.z() << std::endl;
return EXIT_SUCCESS;
}
|