File: voronoi_3.cpp

package info (click to toggle)
cgal 4.0-5
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 65,068 kB
  • sloc: cpp: 500,870; ansic: 102,544; sh: 321; python: 92; makefile: 75; xml: 2
file content (197 lines) | stat: -rw-r--r-- 6,553 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// Copyright (c) 2011 CNRS and LIRIS' Establishments (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s)     : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#include <CGAL/Linear_cell_complex.h>
#include <CGAL/Linear_cell_complex_constructors.h>
#include <CGAL/Linear_cell_complex_operations.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <iostream>
#include <fstream>

/* If you want to use a viewer, you can use one of the following file
 * depending if you use vtk or qglviewer. */
#ifdef CGAL_LCC_USE_QT
#include "linear_cell_complex_3_viewer_qt.h"
#else 
#ifdef CGAL_LCC_USE_VTK
#include "linear_cell_complex_3_viewer_vtk.h"
#endif
#endif

/* // If you want to use exact constructions.
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
typedef CGAL::Linear_cell_complex<3,3,
  CGAL::Linear_cell_complex_traits<3, CGAL::Exact_predicates_exact_constructions_kernel> > LCC_3;
*/

typedef CGAL::Linear_cell_complex<3> LCC_3;
typedef LCC_3::Dart_handle           Dart_handle;
typedef LCC_3::Point                 Point;

typedef CGAL::Delaunay_triangulation_3<LCC_3::Traits> Triangulation;

// Function used to display the voronoi diagram.
void display_voronoi(LCC_3& alcc, Dart_handle adart)
{
  // We remove the infinite volume plus all the volumes adjacent to it.
  // Indeed, we cannot view these volumes since they do not have
  // a "correct geometry". 
  std::stack<Dart_handle> toremove;
  int mark_toremove=alcc.get_new_mark();

  // adart belongs to the infinite volume.
  toremove.push(adart);
  CGAL::mark_cell<LCC_3,3>(alcc, adart, mark_toremove);
 
  // Now we get all the volumes adjacent to the infinite volume.
  for (LCC_3::Dart_of_cell_range<3>::iterator
         it=alcc.darts_of_cell<3>(adart).begin(),
         itend=alcc.darts_of_cell<3>(adart).end(); it!=itend; ++it)
  {
    if ( !alcc.is_marked(it->beta(3), mark_toremove) )
    {
      CGAL::mark_cell<LCC_3,3>(alcc, it->beta(3), mark_toremove);
      toremove.push(it->beta(3));
    }
  }
  
  while( !toremove.empty() )
  {
    CGAL::remove_cell<LCC_3, 3>(alcc, toremove.top());
    toremove.pop();
  }

  CGAL_assertion(alcc.is_without_boundary(1) && alcc.is_without_boundary(2));
  
  std::cout<<"Voronoi subdvision, only finite volumes:"<<std::endl<<"  ";
  alcc.display_characteristics(std::cout) << ", valid=" 
                                          << alcc.is_valid()
                                          << std::endl;

#ifdef CGAL_LCC_USE_VIEWER
  display_lcc(alcc);
#endif // CGAL_LCC_USE_VIEWER
}

template<typename LCC, typename TR>
void transform_dart_to_their_dual(LCC& alcc, LCC& adual,
                                  std::map<typename TR::Cell_handle,
                                           typename LCC::Dart_handle>& assoc)
{
  typename LCC::Dart_range::iterator it1=alcc.darts().begin();
  typename LCC::Dart_range::iterator it2=adual.darts().begin();

  std::map<typename LCC::Dart_handle, typename LCC::Dart_handle> dual;
  
  for ( ; it1!=alcc.darts().end(); ++it1, ++it2 )
  {
    dual[it1]=it2;
  }

  for ( typename std::map<typename TR::Cell_handle, typename LCC::Dart_handle>
          ::iterator it=assoc.begin(), itend=assoc.end(); it!=itend; ++it)
  {
    assoc[it->first]=dual[it->second];
  }
}

template<typename LCC, typename TR>
void set_geometry_of_dual(LCC& alcc, TR& tr,
                          std::map<typename TR::Cell_handle,
                                   typename LCC::Dart_handle>& assoc)
{
  for ( typename std::map<typename TR::Cell_handle, typename LCC::Dart_handle>
          ::iterator it=assoc.begin(), itend=assoc.end(); it!=itend; ++it)
  {
    if ( !tr.is_infinite(it->first) )
      alcc.set_vertex_attribute
        (it->second,alcc.create_vertex_attribute(tr.dual(it->first)));
    else
      alcc.set_vertex_attribute(it->second,alcc.create_vertex_attribute());
  }
}


int main(int narg, char** argv)
{
  if (narg>1 && (!strcmp(argv[1],"-h") || !strcmp(argv[1],"-?")) )
  {
    std::cout<<"Usage : voronoi_3 filename"<<std::endl   
             <<"   filename being a fine containing 3D points used to "
             <<" compute the Delaunay_triangulation_3."<<std::endl;
    return EXIT_FAILURE;
  }

  std::string filename;
  if ( narg==1 )
  {
    filename=std::string("data/points_3");
    std::cout<<"No filename given: use data/points_3 by default."<<std::endl;
  }
  else
    filename=std::string(argv[1]);
  
  // 1) Compute the Delaunay_triangulation_3.
  Triangulation T;

  std::ifstream iFile(filename.c_str());
  if (!iFile)
  {
    std::cout << "Problem reading file " << filename << std::endl;
    return EXIT_FAILURE;
  }
  
  std::istream_iterator<Point> begin(iFile), end;
  T.insert(begin, end);
  assert(T.is_valid(false));
 
  // 2) Convert the triangulation into a 3D lcc.
  LCC_3 lcc;
  std::map<Triangulation::Cell_handle,
           LCC_3::Dart_handle > vol_to_dart;

  Dart_handle dh=CGAL::import_from_triangulation_3<LCC_3, Triangulation>
    (lcc, T, &vol_to_dart);

  std::cout<<"Delaunay triangulation :"<<std::endl<<"  ";
  lcc.display_characteristics(std::cout) << ", valid=" 
                                         << lcc.is_valid() << std::endl;

  // 3) Compute the dual lcc.
  LCC_3 dual_lcc;
  Dart_handle ddh=lcc.dual(dual_lcc, dh);
  // Here, dual_lcc is the 3D Voronoi diagram.
  CGAL_assertion(dual_lcc.is_without_boundary());

  // 4) We update the geometry of dual_lcc by using the std::map
  //    face_to_dart.
  transform_dart_to_their_dual<LCC_3,Triangulation>
    (lcc, dual_lcc, vol_to_dart);
  set_geometry_of_dual<LCC_3,Triangulation>(dual_lcc, T, vol_to_dart);
  
  // 5) Display the dual_lcc characteristics.
  std::cout<<"Voronoi subdvision :"<<std::endl<<"  ";
  dual_lcc.display_characteristics(std::cout) << ", valid=" 
                                              << dual_lcc.is_valid()
                                              << std::endl;
  display_voronoi(dual_lcc, ddh);

  return EXIT_SUCCESS;
}