File: using_fair_splitting_rule.cpp

package info (click to toggle)
cgal 4.0-5
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 65,068 kB
  • sloc: cpp: 500,870; ansic: 102,544; sh: 321; python: 92; makefile: 75; xml: 2
file content (39 lines) | stat: -rw-r--r-- 1,388 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <CGAL/Simple_cartesian.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/Search_traits_2.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <cmath>

typedef CGAL::Simple_cartesian<double> R;
typedef R::Point_2 Point_d;
typedef CGAL::Random_points_in_square_2<Point_d> Random_points_iterator;
typedef CGAL::Counting_iterator<Random_points_iterator> N_Random_points_iterator;
typedef CGAL::Search_traits_2<R> Traits;
typedef CGAL::Euclidean_distance<Traits> Distance;
typedef CGAL::Fair<Traits> Fair;
typedef CGAL::Orthogonal_k_neighbor_search<Traits,Distance,Fair> Neighbor_search;
typedef Neighbor_search::Tree Tree;

int main() {
  const unsigned int N = 1000;
  // generator for random data points in the square ( (-1,-1), (1,1) )
  Random_points_iterator rpit( 1.0);

  Fair fair(5); // bucket size=5
  // Insert number_of_data_points in the tree
  Tree tree(N_Random_points_iterator(rpit,0),
	    N_Random_points_iterator(N),
	    fair);

  Point_d query(0,0);

  // Initialize the search structure, and search all N points
  Neighbor_search search(tree, query, N);

  // report the N nearest neighbors and their distance
  // This should sort all N points by increasing distance from origin
  for(Neighbor_search::iterator it = search.begin(); it != search.end(); ++it){
    std::cout << it->first << " "<< std::sqrt(it->second) << std::endl;
  }
  return 0;
}