File: Event_line_builder.h

package info (click to toggle)
cgal 4.0-5
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 65,068 kB
  • sloc: cpp: 500,870; ansic: 102,544; sh: 321; python: 92; makefile: 75; xml: 2
file content (748 lines) | stat: -rw-r--r-- 25,603 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
// Copyright (c) 2006-2009 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Algebraic_kernel_d/include/CGAL/Algebraic_kernel_d/Event_line_builder.h $
// $Id: Event_line_builder.h 67262 2012-01-18 11:56:04Z hemmer $
// 
//
// Author(s)     : Michael Kerber <mkerber@mpi-inf.mpg.de>
//
// ============================================================================

#ifndef CGAL_ACK_EVENT_LINE_BUILDER
#define CGAL_ACK_EVENT_LINE_BUILDER 1

#include <CGAL/basic.h>

#include <CGAL/Algebraic_structure_traits.h>

#include <CGAL/Algebraic_kernel_d/algebraic_curve_kernel_2_tools.h>
#include <CGAL/Algebraic_kernel_d/Bitstream_descartes.h>
#include <CGAL/Algebraic_kernel_d/exceptions.h>

#include <boost/numeric/interval.hpp>
#include <vector>
#include <algorithm>
#include <utility>

// Constant for the interval test in \c compute_mk
#define CGAL_ACK_COMPUTE_MK_PRECISION 64


#if defined(BOOST_MSVC)
#  pragma warning(push)
#  pragma warning(disable:4290)
#endif

namespace CGAL {

namespace internal {

/*!
 * \brief Constructs Vert_line-objects for an algebraic curve.
 *
 *  
 * The method \ref create_event_line builds such a vert-line
 * for critical x-values. See the 
 * documentation of this routines for further information.
 *
 */
template<typename AlgebraicKernelWithAnalysis_2>
class Event_line_builder {

public:

    typedef AlgebraicKernelWithAnalysis_2 Algebraic_kernel_with_analysis_2;

    // \brief The curve class.
    typedef typename Algebraic_kernel_with_analysis_2::Curve_analysis_2 Curve_analysis_2;


    // \brief Type of the coefficients of the input polynomial
    typedef typename Algebraic_kernel_with_analysis_2::Coefficient Coefficient;

    // \brief The type for rational x-coordinates and for interval boundaries
    typedef typename Algebraic_kernel_with_analysis_2::Bound Bound;

    // \brief Univariate polynomials
    typedef typename Algebraic_kernel_with_analysis_2::Polynomial_1 
        Polynomial_1;

    // \brief Bivariate polynomials
    typedef typename Algebraic_kernel_with_analysis_2::Polynomial_2 
        Polynomial_2;

    // \brief Rational polynomials
    typedef typename
    CGAL::Polynomial_traits_d<Polynomial_2>
        ::template Rebind<Bound,1>::Other::Type Poly_rat_1;

    // \brief Type for x-values
    typedef typename Curve_analysis_2::Algebraic_real_1 Algebraic_real_1;

    //! \brief \c Vert_line specification for critical x-values 
    typedef typename Curve_analysis_2::Status_line_1 Status_line_1;

    // \brief Type for Polynomial traits
    typedef CGAL::Polynomial_traits_d<Polynomial_2> Polynomial_traits_2;

    //! Default Constructor
    Event_line_builder() {}

    /*!
     * \brief Constructs the builder for the \c curve object.
     *
     * Apart from the curve itself a polynomial is passed which is expected
     * to be the primitive part of the curve.
     * If the flag \c compute_sturm_habicht is set, the principal and 
     * coprincipal Sturm-Habicht coefficients of \c polynomial are computed.
     * These coefficients provide information about properties of the curve
     * at certain <tt>x</tt>-coordinates. Some methods of this class are only
     * possible if they are computed.
     *
     * See \c NiX_resultant_matrix  for 
     * more details about Sturm-Habicht sequences.
     */
    Event_line_builder(Algebraic_kernel_with_analysis_2* kernel,
                       Curve_analysis_2 curve,
                       Polynomial_2 polynomial)
        throw(internal::Zero_resultant_exception<Polynomial_2>) 
        : _m_kernel(kernel), curve(curve), polynomial(polynomial)
    {}


    /*! 
     * \brief Creates an event line at position \c alpha for the specified 
     * curve.
     *
     * Additionally, the \c id of the event line to be created has to be
     * specfied, and
     * the number of arcs that are entering from the left and leaving to the
     * right are needed. Furthermore, the flag \c root_of_resultant tells
     * whether \c alpha is a root of the resultant of the specified curve, and
     * \c root_of_content indicates whether \c alpha is a root of the content,
     * which is equivalent to the existence of a vertical line component.
     *
     * The function tries to apply the Bitstream Descartes method to isolate
     * the real roots and create the Vert_line accordingly. For that purpose,
     * symbolic precomputations are mostly necessary, using the Sturm-Habicht
     * coefficients. It is necessary that they were computed beforehand.
     * However, such symbolic computations need not be done if alpha is a
     * simple root of the resultant, so if \c mult equals 1.
     * 
     * The method will succeed, if the curve has only one multiple root
     * at \c alpha over the complex numbers. It will never succeed, if there is
     * more than one real root at \c alpha. In other cases, the outcome is not
     * clear. In cases where the functions fails, a 
     * CGAL::internal::Non_generic_position_exception is thrown, otherwise, a 
     * fixed AcX::Vert_line object is returned.
     */
    Status_line_1
    create_event_line(int id,Algebraic_real_1 alpha,int arcs_left,int arcs_right,
                      bool root_of_resultant, bool root_of_content,int mult) 
        throw(CGAL::internal::Non_generic_position_exception) {

        try {
	
            int k;


            Bitstream_descartes bit_des 
                = construct_bitstream_descartes(alpha,k,root_of_resultant,mult,
                                                arcs_left,arcs_right);
/*
#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << "bitstream descartes constructed" 
                                 << std::endl;
#endif
*/
	
            int n = bit_des.number_of_real_roots();

            int c = this->get_index_of_multiple_root(bit_des);

/*
#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << "n and c: " << n << " " << c << std::endl;
#endif
*/
            int arcs_to_candidate_left=arcs_left-n+1;
            int arcs_to_candidate_right=arcs_right-n+1;
	
            //flag seems to be not used for now, but caused warnings (M.Hemmer) 
            //bool event_flag; 

            //if(false) {
            if(arcs_to_candidate_left!=1 || arcs_to_candidate_right!= 1) {
              //event_flag=true;
            }
            else {

// Need this flag to decide the event flag correctly, 
// we don't care about it for now!
#if !CGAL_ACK_CHECK_CANDIDATE_FOR_SINGULARITY
              //event_flag=false;
#else

                Polynomial_2& f = polynomial;

                if(c==-1 || k==0) {
                  //event_flag=false;
                } else {
#if CGAL_ACK_DEBUG_FLAG
                    CGAL_ACK_DEBUG_PRINT << "Ev check..." << std::flush;
#endif
                    
                    typename Polynomial_traits_2::Differentiate diff;
                    Polynomial_2 fx diff(f,0);
                    Polynomial_2 fy diff(f,1);
                    //event_flag=
                    event_point_checker(bit_des,f,alpha,k,fx,fy);

                }
#endif
            }
	
            int root_number=bit_des.number_of_real_roots();
            
            typename Status_line_1::Arc_container arc_container;

            for(int i=0;i<root_number;i++) {
                if(i != c ) {
                    arc_container.push_back(std::make_pair(1,1));
                }
                else {
                    arc_container.push_back
                        (std::make_pair(arcs_to_candidate_left,
                                        arcs_to_candidate_right));
                }
            }
            
            Status_line_1 vl(alpha, id, curve, arcs_left, arcs_right, 
                             arc_container);
            vl.set_isolator(bit_des);
                    
            vl._set_number_of_branches_approaching_infinity
                (std::make_pair(0,0),std::make_pair(0,0));

#if !CGAL_ACK_SHEAR_ALL_NOT_Y_REGULAR_CURVES
            if(kernel()->is_zero_at_1_object() 
               (CGAL::leading_coefficient(polynomial),alpha)) {
                int n = CGAL::degree(polynomial,1);
                CGAL_assertion(! kernel()->is_zero_at_1_object()
                                 (CGAL::get_coefficient(polynomial,n-1),
                                  alpha));
                CGAL::Sign asym_sign 
                    = kernel()->sign_at_1_object()
                        (CGAL::get_coefficient(polynomial,n-1),alpha)
                    * kernel()->sign_at_1_object()
                        (CGAL::differentiate
                          (CGAL::get_coefficient(polynomial,n)),alpha);
                CGAL_assertion(asym_sign!=CGAL::ZERO);
                if(asym_sign==CGAL::SMALLER) {
                    vl._set_number_of_branches_approaching_infinity
                        (std::make_pair(1,0),std::make_pair(0,1));
                } else {
                    vl._set_number_of_branches_approaching_infinity
                        (std::make_pair(0,1),std::make_pair(1,0));
                }
            }
#endif
        
     
            if(root_of_content) {
                vl._set_v_line();
            }
            return vl;
        }
        catch(CGAL::internal::Non_generic_position_exception /* err */) {
#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << "Detected non-generic position for alpha=" 
                                 << CGAL::to_double(alpha) << std::endl;
#endif
            throw CGAL::internal::Non_generic_position_exception();
        }
      
    }

protected:

    Algebraic_kernel_with_analysis_2* kernel() const {
        return this->_m_kernel;
    }

    /*!
     * Typedef for the Interval type
     */
    typedef boost::numeric::interval<Bound> Interval;

    // \brief Refinement type from the curve class.
    typedef typename Curve_analysis_2::Bitstream_descartes 
    Bitstream_descartes;

    typedef typename Curve_analysis_2::Bitstream_coefficient_kernel 
    Bitstream_coefficient_kernel;    

    typedef typename Curve_analysis_2::Bitstream_traits 
    Bitstream_traits;

    Algebraic_kernel_with_analysis_2* _m_kernel;

    //! The curve whose Status_line_1s are built.
    Curve_analysis_2 curve;

    //! The content free part of the curve's polynomial
    Polynomial_2 polynomial;


    /*! 
     * \brief Exact information about <tt>f<sub>x=alpha</sub></tt>.
     *
     * Returns a pair <tt>(m,k)</tt> with the following meaning. Let 
     * \c seq be a sequence <tt>g<sub>0</sub>,...,g<sub>n</sub></tt>.
     * Then, \c k is the first index for which <tt>g<sub>i</sub>(alpha)</tt>
     * is not zero. The number <tt>m</tt> is the result of the function
     * <tt>C (g<sub>0</sub>(alpha),...,g<sub>n</sub>(alpha))</tt>, where
     * <tt>C</tt> is defined as in L.Gonzalez-Vega, I.Necula: Efficient
     * topology determination of implicitly defined algebraic plane curves.
     * <i>Computer Aided Geometric Design</i> <b>19</b> (2002) 719-743.
     * If \c seq is the sequence of principal Sturm-Habicht coefficients, 
     * \c m is the number of real roots of <tt>f<sub>x=alpha</sub></tt>, 
     * counted without multiplicity.
     *
     * If the first elements in the sequence are known to be zero,
     * \c first_elements_zero can be set accordingly. The zero test is then
     * ommitted for that leading elements.
     */
    template<typename InputIterator>
    std::pair<int,int> compute_mk(Algebraic_real_1 alpha,
				  InputIterator seq_begin,
                                  InputIterator seq_end,
				  int first_elements_zero=0) {
     
        typedef InputIterator Input_iterator;


        Algebraic_real_1& alpha_ref=alpha;

        int m,k=-1; // Initialize to prevent compiler warning
	
        bool k_fixed=false;
        
        int seq_size = std::distance(seq_begin,seq_end);

        typedef int VT;

        typedef std::vector<VT> A_vector;
        A_vector spec_stha(0);

/*
#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << seq_size << std::endl;
#endif
*/

        CGAL_assertion(spec_stha.size()==0);

/*
#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << seq_size << " elements to consider" 
                             << std::endl;
#endif
*/
        int start_i=first_elements_zero;
        for(int i=0;i<start_i;i++) {
            spec_stha.push_back(VT(0));
        }

#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "mk.." << std::flush;
#endif

        Input_iterator seq_it = seq_begin;
        std::advance(seq_it,start_i);
        for(int i=start_i;i< seq_size ;i++,seq_it++ ) {

/*
#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << spec_stha.size() << " " << i << std::endl;
            CGAL_ACK_DEBUG_PRINT << "Now: " << i << "th stha" << std::flush;
            CGAL_ACK_DEBUG_PRINT << "\nTry interval arithmetic.." << std::endl;
#endif
*/

            CGAL::Sign ia_try
	      =kernel()->sign_at_1_object()(*seq_it,
					    alpha_ref,
					    CGAL_ACK_COMPUTE_MK_PRECISION);
	
            //CGAL::Sign ia_try=CGAL::ZERO;

            if(ia_try!=CGAL::ZERO) {
                if(! k_fixed) {
                    k=i;
                    k_fixed=true;
#if CGAL_ACK_DEBUG_FLAG
                    CGAL_ACK_DEBUG_PRINT << "m.." << std::flush;
#endif
                }
                spec_stha.push_back(ia_try);

/*
#if CGAL_ACK_DEBUG_FLAG
                CGAL_ACK_DEBUG_PRINT << "successful" << std::endl;
#endif	  
*/
                continue;
            }
	    /*
#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << "no success" << std::endl;
            CGAL_ACK_DEBUG_PRINT << "Is root of..." << std::flush;
            CGAL_ACK_DEBUG_PRINT << "s." << std::endl;
            CGAL_ACK_DEBUG_PRINT << "pol=" << *seq_it << std::endl;
            CGAL_ACK_DEBUG_PRINT << "alpha=" << alpha.polynomial() << std::endl;
#endif
	    */

            bool root_of = kernel()->is_zero_at_1_object()(*seq_it,alpha);
/*
#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << "done " 
                                 << ((root_of) ? "true" : "false") 
                                 << std::endl;
#endif
*/
            if(root_of) {

/*
#if CGAL_ACK_DEBUG_FLAG
                CGAL_ACK_DEBUG_PRINT << "Is zero" << std::endl;
#endif
*/
                spec_stha.push_back(VT(0));
            } 
            else {
/*                
#if CGAL_ACK_DEBUG_FLAG
                CGAL_ACK_DEBUG_PRINT << "is nonzero.." << std::flush;
#endif
*/
                if(! k_fixed) {
                    k=i;
                    k_fixed=true;
/*
#if CGAL_ACK_DEBUG_FLAG
                    CGAL_ACK_DEBUG_PRINT << "m.." << std::flush;
#endif
*/
                }
/*
#if CGAL_ACK_DEBUG_FLAG                
                ::CGAL::set_ascii_mode(CGAL_ACK_DEBUG_PRINT);
                CGAL_ACK_DEBUG_PRINT << "Stha: " << (*seq_it) << std::endl;
#endif
*/
                VT beta
                    =kernel()->sign_at_1_object() (*seq_it,alpha_ref);
                
/*          
#if CGAL_ACK_DEBUG_FLAG
                CGAL_ACK_DEBUG_PRINT << "Value: " << beta << std::endl;
#endif
*/
                spec_stha.push_back(beta);
/*
#if CGAL_ACK_DEBUG_FLAG
                CGAL_ACK_DEBUG_PRINT << " " << spec_stha.size() << std::endl;
#endif
*/
            }
        }
/*
#if CGAL_ACK_DEBUG_FLAG
          CGAL_ACK_DEBUG_PRINT << "--------" << std::endl;
          CGAL_ACK_DEBUG_PRINT << " " << spec_stha.size() << std::endl;
          for(int j=0;j<(int)spec_stha.size();j++) {
              CGAL_ACK_DEBUG_PRINT << j << ": " << spec_stha[j] << std::endl;
          }
          CGAL_ACK_DEBUG_PRINT << "--------" << std::endl;
#endif
*/        

        typename A_vector::iterator it=spec_stha.begin() + k;
/*
#if CGAL_ACK_DEBUG_FLAG        
        CGAL_ACK_DEBUG_PRINT << "k=" << k << ", Compute m..." << std::flush;
#endif
*/
        m = CGAL::number_of_real_roots(it,spec_stha.end());
/*
#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "done" << std::endl;
#endif
*/
#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "k=" << k << " m=" << m << ".."<< std::flush;
#endif

        return std::make_pair(m,k);

    }

    Poly_rat_1 mod(Poly_rat_1 a,Poly_rat_1 b) const {
        Poly_rat_1 ret=CGAL::mod(a,b);
        return ret;
    }

    /*! 
     * \brief Constructs a Bitstream Descartes object for 
     * <tt>f<sub>x=alpha</sub></tt>
     *
     * Tries to isolate the roots of <tt>f<sub>x=alpha</sub></tt> with the 
     * Bitstream m-k-Descartes method. As additional information, the value
     * \c k is returned which is the greatest common divisor of \c f with its
     * derivative. The flag \c root_of_resultant denotes whether alpha is
     * a root of the resultant of \c f with its derivative.
     * Also, the multiplicity of \c alpha as root of the resultant is given
     * It his multiplcity is 1, one can avoid the computations with the 
     * Sturm-Habicht coefficient by looking at \c arcs_left and \c arcs_right.
     *
     * This method requires the Sturm-Habicht coefficients of \c f to be
     * computed beforehand.
     * On failure, the error CGAL::internal::Non_generic_position_exception 
     * is thrown.
     */
    Bitstream_descartes construct_bitstream_descartes(const Algebraic_real_1& 
						      alpha,
						      int& k,
						      bool root_of_resultant,
						      int mult,
						      int arcs_left,
						      int arcs_right) 
        throw(CGAL::internal::Non_generic_position_exception) {
        
        
        Bitstream_traits traits(Bitstream_coefficient_kernel(kernel(),alpha));

        if(root_of_resultant) {
#if !CGAL_ACK_SHEAR_ALL_NOT_Y_REGULAR_CURVES
            if(kernel()->is_zero_at_1_object() 
               (CGAL::leading_coefficient(polynomial),alpha)) {
                Polynomial_2 trunc_pol = 
                    CGAL::internal::poly_non_vanish_leading_term
                      (kernel(),polynomial,alpha);

                CGAL_assertion(CGAL::degree(trunc_pol,1)+1 == 
                               CGAL::degree(polynomial,1));
                CGAL::internal::Square_free_descartes_tag t;

                Bitstream_descartes bit_des(t,trunc_pol,traits);

                return bit_des;
            }
#endif

            int m;
            CGAL_assertion(mult>0);
            if(mult==1) {
                m=(arcs_left+arcs_right) / 2;
                k=1;
            }
            else {
                std::pair<int,int> mk 
                    = compute_mk(alpha,
                                 curve.principal_sturm_habicht_begin(),
                                 curve.principal_sturm_habicht_end(),
                                 1);

                m = mk.first;
                k = mk.second;
            }
	
#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << "Bit Des..." << std::flush;
#endif
      
            CGAL::internal::M_k_descartes_tag t;

            Bitstream_descartes bit_des(t,polynomial,m,k,traits);

            return bit_des;
        }
        else {
            CGAL::internal::Square_free_descartes_tag t;
            Bitstream_descartes bit_des(t,polynomial,traits);

            return bit_des;
        }

    }


    /*!
     * \brief Checks whether a point is a singularity or not.  
     *
     * This routine is applied in situations where a potential event point
     * has one incident arc to the left and to the right. To distinguish 
     * singularities from other points, this method checks whether the two
     * linearly independent partial derivatives \c der_1 and \c der_2 vansh
     * at the point \c (alpha,beta). Here, \c beta is implicitly defined as
     * \f[\beta=\frac{-costha[k-1]}{k\cdot stha[k]}\f]
     * and it is verified first that \c beta is indeed the y-value that
     * corresponds to the multiple root in the <tt>bit_des</tt>-instance.
     * If it is not, a Non_generic_position_exception is thrown.
     *
     * If no exception is thrown, the function returns true if and only if
     * there is a singularity at <tt>(alpha,beta)</tt>.
     */
    bool event_point_checker(Bitstream_descartes& bit_des,
			     const Polynomial_2& polynomial,
			     const Algebraic_real_1& alpha,
			     int k,
			     const Polynomial_2& der_1,
			     const Polynomial_2& der_2) 
        throw(CGAL::internal::Non_generic_position_exception) {
     
        //Guess the right expression for y
/*
#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << costha.size() << " " 
                             << stha.size() << std::endl;
        CGAL_ACK_DEBUG_PRINT << k << std::endl;
        CGAL_ACK_DEBUG_PRINT << "Costha: " << costha[k-1] 
                             << " Stha: " << stha[k] << std::endl;
#endif
*/
      
        Polynomial_1 p = -curve.coprincipal_sturm_habicht_of_primitive(k);
        Polynomial_1 q 
            = Coefficient(k)*curve.principal_sturm_habicht_of_primitive(k);
/*
#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << k << " " << CGAL::to_double(alpha) 
                             << std::endl);
        CGAL_ACK_DEBUG_PRINT << p << " " << q << std::endl 
                             << polynomial << std::endl;
        Bound a_d = alpha.low();
        CGAL_ACK_DEBUG_PRINT << CGAL::to_double(p.evaluate(a_d)/
                                                q.evaluate(a_d)) 
                             << std::endl;
#endif
*/
        // Check whether it lies in the candidates interval
      
#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "iv-test..." << std::flush;
#endif

        typedef typename CGAL::Get_arithmetic_kernel<Algebraic_real_1>
            ::Arithmetic_kernel::Bigfloat_interval BFI;
      
        CGAL::internal::Bitstream_coefficient_kernel_at_alpha
            <Algebraic_kernel_with_analysis_2> 
            alpha_kernel(kernel(),alpha);

        int c = this->get_index_of_multiple_root(bit_des);

        long old_prec = CGAL::get_precision(BFI());

        //std::cout << "p=" << p <<  std::endl;
        //std::cout << "q=" << q <<  std::endl;

        long prec=16;

        while(true) {
            CGAL::set_precision(BFI(),prec);
            //std::cout << "Increased to " << prec << std::endl;
            BFI isol_iv 
                = CGAL::hull(CGAL::convert_to_bfi(bit_des.left_bound(c)),
                             CGAL::convert_to_bfi(bit_des.right_bound(c)));
            BFI q_iv = alpha_kernel.convert_to_bfi_object()(q);
            if(! CGAL::in_zero(q_iv)) {
                BFI p_iv = alpha_kernel.convert_to_bfi_object()(p);
                BFI approx_iv = p_iv/q_iv;
                //std::cout << "p_iv=[" << CGAL::lower(p_iv) << "," << CGAL::upper(p_iv) << "]" << std::endl;
                //std::cout << "q_iv=[" << CGAL::lower(q_iv) << "," << CGAL::upper(q_iv) << "]"  << std::endl;
                //std::cout << "isol_iv=[" << CGAL::lower(isol_iv) << "," << CGAL::upper(isol_iv) << "]" << std::endl;
                //std::cout << "approx_iv=[" << CGAL::lower(approx_iv) << "," << CGAL::upper(approx_iv) << "]"  << std::endl;
                if(CGAL::subset(approx_iv,isol_iv)) {
                    break;
                }
                if(! CGAL::overlap(approx_iv,isol_iv)) {
                    throw CGAL::internal::Non_generic_position_exception();
                }
            }
            prec*=2;
        }

        CGAL::set_precision(BFI(),old_prec);

#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "on f..." << std::flush;
#endif
        if(! CGAL::internal::zero_test_bivariate
	       <Algebraic_kernel_with_analysis_2>
	         (kernel(),alpha,polynomial,p,q)) {
#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << "Detected non-generic position for alpha=" 
                                 << CGAL::to_double(alpha) << std::endl;
#endif
            throw CGAL::internal::Non_generic_position_exception();
        }
        // Check whether the two partial derivatives vanish
#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "on fx..." << std::flush;
#endif
        bool is_singularity 
	  = CGAL::internal::zero_test_bivariate
	      <Algebraic_kernel_with_analysis_2>
	        (kernel(),alpha,der_1,p,q);
        if(is_singularity) {
#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << "on fy..." << std::flush;
#endif
            return CGAL::internal::zero_test_bivariate
	             <Algebraic_kernel_with_analysis_2>
	               (kernel(),alpha,der_2,p,q);
        } else {
            return false;
        }
    }

protected:

    int get_index_of_multiple_root(const Bitstream_descartes& bit_des) const {
        int n = bit_des.number_of_real_roots();
        for(int i=0;i<n;i++) {
            if(! bit_des.is_certainly_simple_root(i)) {
                return i;
            }
        }
        return -1;
    }
         

}; //class Event_line_builder

} // namespace internal

} //namespace CGAL


#if defined(BOOST_MSVC)
#  pragma warning(pop)
#endif

#endif //CGAL_ACK_VERT_EVENT_BUILDER