1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
// Copyright (c) 2006-2009 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Algebraic_kernel_d/include/CGAL/Algebraic_kernel_d_1.h $
// $Id: Algebraic_kernel_d_1.h 67093 2012-01-13 11:22:39Z lrineau $
//
//
// Author(s) : Michael Hemmer <hemmer@mpi-inf.mpg.de>
// Sebastian Limbach <slimbach@mpi-inf.mpg.de>
// Michael Kerber <mkerber@mpi-inf.mpg.de>
//
// ============================================================================
#ifndef CGAL_ALGEBRAIC_KERNEL_D_1_H
#define CGAL_ALGEBRAIC_KERNEL_D_1_H
#ifndef CGAL_AK_ENABLE_DEPRECATED_INTERFACE
#define CGAL_AK_ENABLE_DEPRECATED_INTERFACE 0
#endif
#include <CGAL/basic.h>
#include <CGAL/Algebraic_kernel_d/flags.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Arithmetic_kernel.h>
#include <CGAL/Algebraic_kernel_d/Algebraic_real_d_1.h>
#include <CGAL/Algebraic_kernel_d/Descartes.h>
#include <CGAL/Algebraic_kernel_d/Real_roots.h>
#include <CGAL/Algebraic_kernel_d/refine_zero_against.h>
#include <CGAL/Algebraic_kernel_d/Interval_evaluate_1.h>
#include <CGAL/Algebraic_kernel_d/bound_between_1.h>
#include <CGAL/ipower.h>
namespace CGAL {
namespace internal {
template< class AlgebraicReal1, class Isolator_ >
class Algebraic_kernel_d_1_base {
public:
typedef AlgebraicReal1 Algebraic_real_1;
typedef Isolator_ Isolator;
typedef typename Algebraic_real_1::Coefficient Coefficient;
typedef typename Algebraic_real_1::Bound Bound;
typedef typename Algebraic_real_1::Polynomial_1 Polynomial_1;
// TODO: Other choice?
typedef int size_type;
typedef int Multiplicity_type;
private:
typedef CGAL::Polynomial_traits_d< Polynomial_1 > PT_1;
protected:
// Some functors used for STL calls
template<typename A,typename B>
struct Pair_first : public std::unary_function<std::pair<A,B>,A> {
A operator() (std::pair<A,B> pair) const { return pair.first; }
};
template<typename A,typename B>
struct Pair_second : public std::unary_function<std::pair<A,B>,B> {
B operator() (std::pair<A,B> pair) const { return pair.second; }
};
public:
class Algebraic_real_traits {
public:
typedef Algebraic_real_1 Type;
struct Bound_between
: public std::binary_function< Type, Type, Bound > {
Bound operator()( const Type& t1,
const Type& t2 ) const {
#if CGAL_AK_DONT_USE_SIMPLE_BOUND_BETWEEN
#warning uses deprecated bound_between_1 functor
return t1.rational_between( t2 );
#else
return internal::simple_bound_between(t1,t2);
#endif
}
};
struct Lower_bound
: public std::unary_function< Type, Bound > {
Bound operator()( const Type& t ) const {
return t.low();
}
};
struct Upper_bound
: public std::unary_function< Type, Bound > {
Bound operator()( const Type& t ) const {
return t.high();
}
};
struct Refine
: public std::unary_function< Type, void > {
void operator()( const Type& t ) const {
t.refine();
}
void operator()( Type& t, int rel_prec ) const {
// If t is zero, we can refine the interval to
// infinite precission
if( CGAL::is_zero( t ) ) {
t = Type(0);
} else {
// Refine until both boundaries have the same sign
while( CGAL::sign( t.high() ) !=
CGAL::sign( t.low() ) )
t.refine();
CGAL_assertion( CGAL::sign( t.high() ) != CGAL::ZERO &&
CGAL::sign( t.low() ) != CGAL::ZERO );
// Calculate the needed precision
Bound prec = Bound(1) /
CGAL::ipower( Bound(2), rel_prec );
// Refine until precision is reached
while( CGAL::abs( t.high() - t.low() ) /
(CGAL::max)( CGAL::abs( t.high() ),
CGAL::abs( t.low() ) ) > prec ) {
t.refine();
CGAL_assertion( CGAL::sign( t.high() ) != CGAL::ZERO &&
CGAL::sign( t.low() ) != CGAL::ZERO );
}
}
}
};
struct Approximate_absolute_1:
public std::binary_function<Algebraic_real_1,int,std::pair<Bound,Bound> >{
std::pair<Bound,Bound>
operator()(const Algebraic_real_1& x, int prec) const {
Lower_bound lower;
Upper_bound upper;
Refine refine;
Bound l = lower(x);
Bound u = upper(x);
Bound error = CGAL::ipower(Bound(2),CGAL::abs(prec));
while((prec>0)?((u-l)*error>Bound(1)):((u-l)>error)){
refine(x);
u = upper(x);
l = lower(x);
}
return std::make_pair(l,u);
}
};
struct Approximate_relative_1:
public std::binary_function<Algebraic_real_1,int,std::pair<Bound,Bound> >{
std::pair<Bound,Bound>
operator()(const Algebraic_real_1& x, int prec) const {
if(CGAL::is_zero(x)) return std::make_pair(Bound(0),Bound(0));
Lower_bound lower;
Upper_bound upper;
Refine refine;
Bound l = lower(x);
Bound u = upper(x);
Bound error = CGAL::ipower(Bound(2),CGAL::abs(prec));
Bound min_b = (CGAL::min)(CGAL::abs(u),CGAL::abs(l));
while((prec>0)?((u-l)*error>min_b):((u-l)>error*min_b)){
refine(x);
u = upper(x);
l = lower(x);
min_b = (CGAL::min)(CGAL::abs(u),CGAL::abs(l));
}
return std::make_pair(l,u);
}
};
#if CGAL_AK_ENABLE_DEPRECATED_INTERFACE
typedef Lower_bound Lower_boundary;
typedef Upper_bound Upper_boundary;
typedef Bound_between Boundary_between;
#endif
}; // class Algebraic_real_traits
// Functors of Algebraic_kernel_d_1
struct Solve_1 {
public:
template <class OutputIterator>
OutputIterator
operator()(const Polynomial_1& p, OutputIterator oi) const {
#if CGAL_AK_ENABLE_DEPRECATED_INTERFACE
#else
CGAL_precondition(!CGAL::is_zero(p));
#endif
internal::Real_roots< Algebraic_real_1, Isolator > real_roots;
std::list< int > mults;
std::list< Algebraic_real_1 > roots;
real_roots( p, std::back_inserter(roots), std::back_inserter( mults ) );
CGAL_assertion(roots.size()==mults.size());
std::list<int>::iterator mit =mults.begin();
typename std::list< Algebraic_real_1 >::iterator rit = roots.begin();
while(rit != roots.end()) {
//*oi++ = std::make_pair(*rit, (unsigned int)(*mit));
*oi++ = std::make_pair(*rit, *mit);
rit++;
mit++;
}
return oi;
}
#if 1 || CGAL_AK_ENABLE_DEPRECATED_INTERFACE
template< class OutputIterator >
OutputIterator operator()(
const Polynomial_1& p,
OutputIterator oi ,
bool known_to_be_square_free) const {
return this->operator()(p,known_to_be_square_free,oi);
}
#endif
template< class OutputIterator >
OutputIterator operator()(
const Polynomial_1& p,
bool known_to_be_square_free,
OutputIterator oi) const {
internal::Real_roots< Algebraic_real_1, Isolator > real_roots;
#if CGAL_AK_ENABLE_DEPRECATED_INTERFACE
#else
CGAL_precondition(!CGAL::is_zero(p));
#endif
std::list<Algebraic_real_1> roots;
if( known_to_be_square_free ){
real_roots(p,std::back_inserter(roots));
}else{
std::list<int> dummy;
real_roots(p,std::back_inserter(roots),std::back_inserter(dummy));
}
return std::copy(roots.begin(),roots.end(),oi);
}
#if CGAL_AK_ENABLE_DEPRECATED_INTERFACE
template< class OutputIteratorRoots , class OutputIteratorMults >
std::pair<OutputIteratorRoots,OutputIteratorMults>
operator()(
const Polynomial_1& p,
OutputIteratorRoots roi,
OutputIteratorMults moi) const {
internal::Real_roots< Algebraic_real_1, Isolator > real_roots;
real_roots(p,roi,moi);
return std::make_pair(roi,moi);
}
#endif
protected:
/*
// TODO: Can we avoid to use this?
struct Greater_compare :
public std::binary_function<Algebraic_real_1,Algebraic_real_1,bool> {
bool operator() (const Algebraic_real_1& a, const Algebraic_real_1& b)
const {
return a>b;
}
};
*/
public:
template< class OutputIterator >
OutputIterator operator()(const Polynomial_1& p, Bound l, Bound u,
OutputIterator res) const {
std::vector<std::pair<Algebraic_real_1,Multiplicity_type> > roots;
this->operator() (p,std::back_inserter(roots));
Algebraic_real_1 alg_l=Construct_algebraic_real_1()(l);
Algebraic_real_1 alg_u=Construct_algebraic_real_1()(u);
typedef typename
std::vector<std::pair<Algebraic_real_1,Multiplicity_type> >::iterator
Iterator;
Pair_first<Algebraic_real_1,Multiplicity_type> pair_first;
Iterator it_start=std::lower_bound
(::boost::make_transform_iterator(roots.begin(),pair_first),
::boost::make_transform_iterator(roots.end(),pair_first),
alg_l).base();
Iterator it_end=std::upper_bound
(::boost::make_transform_iterator(it_start,pair_first),
::boost::make_transform_iterator(roots.end(),pair_first),
alg_u).base();
std::copy(it_start,it_end,res);
return res;
}
template< class OutputIterator >
OutputIterator operator()(const Polynomial_1& p,
bool known_to_be_square_free,
Bound l, Bound u,
OutputIterator res) const {
std::vector<Algebraic_real_1 > roots;
this->operator() (p,known_to_be_square_free,std::back_inserter(roots));
Algebraic_real_1 alg_l=Construct_algebraic_real_1()(l);
Algebraic_real_1 alg_u=Construct_algebraic_real_1()(u);
typedef typename
std::vector<Algebraic_real_1>::iterator
Iterator;
Iterator it_start=std::lower_bound(roots.begin(),roots.end(),alg_l);
Iterator it_end=std::upper_bound(it_start,roots.end(),alg_u);
std::copy(it_start,it_end,res);
return res;
}
};
class Number_of_solutions_1
: public std::unary_function<Polynomial_1,size_type> {
public:
size_type operator()
(const Polynomial_1& p) const {
std::vector<std::pair<Algebraic_real_1,Multiplicity_type> > roots;
Solve_1()(p,std::back_inserter(roots));
return roots.size();
}
};
struct Sign_at_1
: public std::binary_function< Polynomial_1, Algebraic_real_1, CGAL::Sign > {
CGAL::Sign operator()( const Polynomial_1& p, const Algebraic_real_1& ar ) const {
if(CGAL::is_zero(p)) return ZERO;
if(CGAL::degree(p)==0) return p.sign_at(0);
if( ar.low() == ar.high() ) return p.sign_at( ar.low() );
if (p == ar.polynomial()) {
return ZERO;
}
Polynomial_1 g = gcd_utcf(p,ar.polynomial());
if (g.sign_at(ar.low()) != g.sign_at(ar.high())) return ZERO;
while(internal::descartes(p,ar.low(),ar.high()) > 0) ar.refine();
while( p.sign_at(ar.low()) == ZERO ) ar.refine();
while( p.sign_at(ar.high()) == ZERO ) ar.refine();
CGAL::Sign result = p.sign_at(ar.low());
CGAL_assertion(result == p.sign_at(ar.high()));
return result;
}
};
struct Is_zero_at_1
: public std::binary_function< Polynomial_1, Algebraic_real_1, bool > {
bool operator()( const Polynomial_1& p, const Algebraic_real_1& ar ) const {
if(CGAL::is_zero(p)) return true;
if( ar.low() == ar.high() ) return p.sign_at( ar.low() ) == ZERO;
Polynomial_1 g = gcd_utcf(p,ar.polynomial());
return g.sign_at(ar.low()) != g.sign_at(ar.high());
}
};
struct Is_square_free_1
: public std::unary_function< Polynomial_1, bool > {
bool operator()( const Polynomial_1& p ) const {
typename CGAL::Polynomial_traits_d< Polynomial_1 >::Is_square_free isf;
return isf(p);
}
};
struct Is_coprime_1
: public std::binary_function< Polynomial_1, Polynomial_1, bool > {
bool operator()( const Polynomial_1& p1, const Polynomial_1& p2 ) const {
typename CGAL::Polynomial_traits_d< Polynomial_1 >::Total_degree total_degree;
// TODO: Is GCD already filtered?
return( total_degree( gcd_utcf( p1, p2 ) ) == 0 );
}
};
struct Make_square_free_1
: public std::unary_function< Polynomial_1, Polynomial_1 > {
Polynomial_1 operator()( const Polynomial_1& p ) const {
return typename CGAL::Polynomial_traits_d< Polynomial_1 >::Make_square_free()( p );
}
};
struct Make_coprime_1 {
typedef bool result_type;
typedef Polynomial_1 first_argument_type;
typedef Polynomial_1 second_argument_type;
typedef Polynomial_1 third_argument_type;
typedef Polynomial_1 fourth_argument_type;
typedef Polynomial_1 fifth_argument_type;
bool operator()( const Polynomial_1& p1,
const Polynomial_1& p2,
Polynomial_1& g, // ggT utcf
Polynomial_1& q1, // Rest utcf
Polynomial_1& q2 ) const {
g = typename CGAL::Polynomial_traits_d< Polynomial_1 >::Gcd_up_to_constant_factor()( p1, p2 );
q1 = p1 / g;
q2 = p2 / g;
return CGAL::is_one(g);
}
};
struct Square_free_factorize_1 {
template< class OutputIterator>
OutputIterator operator()( const Polynomial_1& p, OutputIterator it) const {
typename PT_1::Square_free_factorize_up_to_constant_factor sqff;
return sqff(p,it);
}
};
struct Compute_polynomial_1 : public std::unary_function<Algebraic_real_1,
Polynomial_1> {
Polynomial_1 operator()(const Algebraic_real_1& x) const {
return x.polynomial();
}
};
struct Construct_algebraic_real_1 {
public:
typedef Algebraic_real_1 result_type;
result_type operator() (int a) const {
return Algebraic_real_1(a);
}
result_type operator() (Bound a) const {
return Algebraic_real_1(a);
}
result_type operator()
(typename CGAL::First_if_different<Coefficient,Bound>::Type a) const {
Coefficient coeffs[2] = {a,Coefficient(-1)};
Polynomial_1 p = typename PT_1::Construct_polynomial()
(coeffs,coeffs+2);
std::vector<Algebraic_real_1 > roots;
Solve_1()(p,true,std::back_inserter(roots));
CGAL_assertion(roots.size() == size_type(1));
return roots[0];
}
result_type operator() (Polynomial_1 p,size_type i)
const {
std::vector<Algebraic_real_1 > roots;
Solve_1()(p,true,std::back_inserter(roots));
CGAL_assertion( size_type(roots.size()) > i);
return roots[i];
}
result_type operator() (Polynomial_1 p,
Bound l, Bound u) const {
CGAL_precondition(l<u);
return Algebraic_real_1(p,l,u);
}
};
struct Compare_1
: public std::binary_function<Algebraic_real_1,
Algebraic_real_1,
CGAL::Comparison_result>{
typedef CGAL::Comparison_result result_type;
result_type operator() (Algebraic_real_1 a,Algebraic_real_1 b) const {
return typename Real_embeddable_traits<Algebraic_real_1>
::Compare() (a,b);
}
result_type operator() (Algebraic_real_1 a,int b) const {
return this->operator()(a,Construct_algebraic_real_1()(b));
}
result_type operator() (Algebraic_real_1 a,Bound b) const {
return this->operator()(a,Construct_algebraic_real_1()(b));
}
result_type operator()
(Algebraic_real_1 a,
typename CGAL::First_if_different<Coefficient,Bound>::Type b) const {
return this->operator()(a,Construct_algebraic_real_1()(b));
}
result_type operator() (int a, Algebraic_real_1 b) const {
return this->operator()(Construct_algebraic_real_1()(a),b);
}
result_type operator() (Bound a,Algebraic_real_1 b) const {
return this->operator()(Construct_algebraic_real_1()(a),b);
}
result_type operator()
(typename CGAL::First_if_different<Coefficient,Bound>::Type a,
Algebraic_real_1 b) const {
return this->operator()(Construct_algebraic_real_1()(a),b);
}
};
public:
struct Isolate_1 : public std::binary_function
< Algebraic_real_1,Polynomial_1,std::pair<Bound,Bound> > {
public:
std::pair<Bound,Bound> operator() (const Algebraic_real_1 a,
const Polynomial_1 p) const {
if(p == a.polynomial()) return std::make_pair(a.low(),a.high());
std::vector<Algebraic_real_1> roots;
// First isolate p...
Solve_1()(p,false,std::back_inserter(roots));
typedef typename std::vector<Algebraic_real_1>::iterator Iterator;
// Binary search on the root to find a place where a could be inserted
std::pair<Iterator,Iterator> it_pair
= equal_range(roots.begin(),roots.end(),a);
CGAL_assertion(std::distance(it_pair.first,it_pair.second)==0 ||
std::distance(it_pair.first,it_pair.second)==1);
// If we can insert a in two places, it must have been in roots already
bool a_in_roots = std::distance(it_pair.first,it_pair.second)==1;
if(a_in_roots) {
// TODO: can we rely on the property that the isolating intervals
// of the roots in p are isolating from each other. What
// if p was factorized during isolation? Is that still
// guaranteed? To be sure, we do it this way:
if(it_pair.first!=roots.begin()) {
it_pair.first->strong_refine(*(it_pair.first-1));
}
if(it_pair.second!=roots.end()) {
it_pair.first->strong_refine(*(it_pair.second));
}
return std::make_pair(it_pair.first->low(),it_pair.first->high());
} else {
// Refine a until disjoint from neighbors
// This is probably not even necessary since the isolating
// interval of a isolates against all roots of p thanks to the
// comparisons. But to be sure...
if(it_pair.first!=roots.begin()) {
a.strong_refine(*(it_pair.first-1));
}
if(it_pair.first!=roots.end()) {
a.strong_refine(*(it_pair.first));
}
return std::make_pair(a.low(),a.high());
}
}
};
typedef typename Algebraic_real_traits::Bound_between Bound_between_1;
typedef typename Algebraic_real_traits::Approximate_absolute_1 Approximate_absolute_1;
typedef typename Algebraic_real_traits::Approximate_relative_1 Approximate_relative_1;
#define CGAL_ALGEBRAIC_KERNEL_1_PRED(Y,Z) Y Z() const { return Y(); }
#define CGAL_ALGEBRAIC_KERNEL_1_PRED_WITH_KERNEL \
Y Z() const { return Y((const Algebraic_kernel_d_1*)this); }
CGAL_ALGEBRAIC_KERNEL_1_PRED(Is_square_free_1,
is_square_free_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Make_square_free_1,
make_square_free_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Square_free_factorize_1,
square_free_factorize_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Is_coprime_1,
is_coprime_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Make_coprime_1,
make_coprime_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Solve_1,
solve_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Number_of_solutions_1,
number_of_solutions_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Construct_algebraic_real_1,
construct_algebraic_real_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Sign_at_1,
sign_at_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Is_zero_at_1,
is_zero_at_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Compare_1,compare_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Bound_between_1,
bound_between_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Approximate_absolute_1,
approximate_absolute_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Approximate_relative_1,
approximate_relative_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Compute_polynomial_1,
compute_polynomial_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Isolate_1,
isolate_1_object);
// Deprecated
#if CGAL_AK_ENABLE_DEPRECATED_INTERFACE
typedef Bound Boundary;
typedef typename Algebraic_real_traits::Refine Refine_1;
typedef typename Algebraic_real_traits::Lower_bound Lower_bound_1;
typedef typename Algebraic_real_traits::Upper_bound Upper_bound_1;
typedef typename Algebraic_real_traits::Lower_bound Lower_boundary_1;
typedef typename Algebraic_real_traits::Upper_bound Upper_boundary_1;
typedef Bound_between_1 Boundary_between_1;
CGAL_ALGEBRAIC_KERNEL_1_PRED(Refine_1, refine_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Lower_bound_1, lower_bound_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Upper_bound_1, upper_bound_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Lower_boundary_1, lower_boundary_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Upper_boundary_1, upper_boundary_1_object);
CGAL_ALGEBRAIC_KERNEL_1_PRED(Boundary_between_1, boundary_between_1_object);
#endif
#undef CGAL_ALGEBRAIC_KERNEL_1_PRED
};
} // namespace internal
template< class Coefficient,
class Bound = typename CGAL::Get_arithmetic_kernel< Coefficient >::Arithmetic_kernel::Rational,
class RepClass = internal::Algebraic_real_rep< Coefficient, Bound >,
class Isolator = internal::Descartes< typename CGAL::Polynomial_type_generator<Coefficient,1>::Type, Bound > >
class Algebraic_kernel_d_1
: public internal::Algebraic_kernel_d_1_base<
// Template argument #1 (AlgebraicReal1)
internal::Algebraic_real_d_1<
Coefficient,
Bound,
::CGAL::Handle_policy_no_union,
RepClass >,
// Template argument #2 (Isolator_)
Isolator >
{};
} //namespace CGAL
#endif // CGAL_ALGEBRAIC_KERNEL_D_1_H
|