File: Alpha_shape_3.h

package info (click to toggle)
cgal 4.0-5
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 65,068 kB
  • sloc: cpp: 500,870; ansic: 102,544; sh: 321; python: 92; makefile: 75; xml: 2
file content (1917 lines) | stat: -rw-r--r-- 60,378 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
// Copyright (c) 1997, 2012  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the so
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Alpha_shapes_3/include/CGAL/Alpha_shape_3.h $
// $Id: Alpha_shape_3.h 67216 2012-01-17 15:28:40Z sloriot $
// 
//
// Author(s)     : Tran Kai Frank DA <Frank.Da@sophia.inria.fr>
//                 Andreas Fabri <Andreas.Fabri@geometryfactory.com>
//                 Mariette Yvinec <Mariette.Yvinec@sophia.inria.fr>

#ifndef CGAL_ALPHA_SHAPE_3_H
#define CGAL_ALPHA_SHAPE_3_H

#include <CGAL/basic.h>

#include <set>
#include <map>
#include <list>
#include <vector>
#include <algorithm>
#include <utility>
#include <iostream>

#include <CGAL/Triangulation_utils_3.h>
#include <CGAL/Object.h>
#include <CGAL/Unique_hash_map.h>
#include <CGAL/Compact_container.h>
#include <CGAL/Alpha_shape_vertex_base_3.h>
#include <CGAL/Alpha_shape_cell_base_3.h>
#include <CGAL/internal/Lazy_alpha_nt_3.h>
#ifdef CGAL_USE_GEOMVIEW
#include <CGAL/IO/Geomview_stream.h>  // TBC
#endif

//-------------------------------------------------------------------
namespace CGAL {
//-------------------------------------------------------------------

template < class Dt, class ExactAlphaComparisonTag = Tag_false >
class Alpha_shape_3 : public Dt
{
  // DEFINITION The class Alpha_shape_3<Dt> represents the family
  // of alpha-shapes for a set of points (or a set of weighted points)
  // for all possible values of alpha. The alphashape is defined  through
  // the Delaunay tetrahedralization of the points
  // (or the Regular tetrahedralization in case of weighted points)
  // and depends on the value of a parameter called alpha.
  // The alpha_shape is the domain of a subcomplex of this triangulation
  // called the Alpha_complex. The alpha_complex includes any simplex
  // having  a circumscribing sphere (an orthogonal sphere
  // in case of weighted points) empty of other points
  // (or suborthogonal to other sites in case of weighted points)
  // with squared radius equal or less than alpha
 
  // The alpha_shapes comes in two versions : GENERAL or REGULARIZED
  // where the REGULARIZED version is onbtaining by restricting the
  // alpha complex ti is pure 3D component.

  // The cells of the triangulation are classified as INTERIOR
  // or EXTERIOR according to the value alpha_cell of their circumsphere 
  // squared radius compared to alpha.

  // In GENERAL mode each k-dimensional simplex of the triangulation
  // for (k=0,1,2) 
  // can be classified as EXTERIOR, SINGULAR, REGULAR
  // or INTERIOR with respect to the alpha shape.
  // In GENERAL mode a $k$ simplex is REGULAR if it is on the boundary
  // of the alpha_complex and belongs to a $k+1$ simplex in the complex
  // and it is SINGULAR simplex if it is  a boundary simplex tht is not
  // included in a $k+1$ simplex of the complex.
  
  // In REGULARIZED mode each k-dimensional simplex of the triangulation
  // for (k=0,1,2) 
  // can be classified as EXTERIOR, REGULAR
  // or INTERIOR with respect to the alpha shape.
  // A $k$ simplex is REGULAR if it is on the boundary of alpha complex
  // and belong to a tetrahedral cell of the complex.

  // Roughly, the Alpha_shapes data structure computes and stores, 
  // for each simplex
  // the at most three critical value (alpha_min, alpha_mid and alpha_max)
  // which compared to the actual alpha value
  // determine the classification of the simplex.


  //------------------------- TYPES ------------------------------------

public:
  typedef Dt                                        Triangulation;
  typedef typename Dt::Geom_traits                  Gt;
  typedef typename Dt::Triangulation_data_structure Tds;

  //extra the type used for representing alpha according to ExactAlphaComparisonTag
  typedef typename internal::Alpha_nt_selector_3<Gt,ExactAlphaComparisonTag,typename Dt::Weighted_tag>::Type_of_alpha  NT;
  typedef typename internal::Alpha_nt_selector_3<Gt,ExactAlphaComparisonTag,typename Dt::Weighted_tag>::Compute_squared_radius_3 Compute_squared_radius_3;
  typedef NT      FT;
  typedef typename Gt::FT Coord_type;
  //checks whether tags are correctly set in Vertex and Cell classes
  CGAL_static_assertion( (boost::is_same<NT,typename Dt::Cell::NT>::value) );
  CGAL_static_assertion( (boost::is_same<NT,typename Dt::Vertex::Alpha_status::NT>::value) );

  typedef typename Gt::Point_3 Point;
  
  typedef typename Dt::Cell_handle Cell_handle;
  typedef typename Dt::Vertex_handle Vertex_handle;
  typedef typename Dt::Facet Facet;
  typedef typename Dt::Edge Edge;

  typedef typename Dt::Cell_circulator  Cell_circulator;
  typedef typename Dt::Facet_circulator Facet_circulator;

  typedef typename Dt::Cell_iterator   Cell_iterator;
  typedef typename Dt::Facet_iterator  Facet_iterator;
  typedef typename Dt::Edge_iterator   Edge_iterator;
  typedef typename Dt::Vertex_iterator Vertex_iterator;

  typedef typename Dt::Finite_cells_iterator    Finite_cells_iterator;
  typedef typename Dt::Finite_facets_iterator   Finite_facets_iterator;
  typedef typename Dt::Finite_edges_iterator    Finite_edges_iterator;
  typedef typename Dt::Finite_vertices_iterator Finite_vertices_iterator;

  typedef typename Dt::size_type    size_type;
  typedef typename Dt::Locate_type  Locate_type;
  typedef typename Dt::Weighted_tag Weighted_tag;

  using Dt::dimension;
  using Dt::finite_facets_begin;
  using Dt::finite_facets_end;
  using Dt::finite_edges_begin;
  using Dt::finite_edges_end;
  using Dt::finite_vertices_begin;
  using Dt::finite_vertices_end;
  using Dt::finite_cells_begin;
  using Dt::finite_cells_end;
  using Dt::VERTEX;
  using Dt::EDGE;
  using Dt::FACET;
  using Dt::CELL;
  using Dt::OUTSIDE_CONVEX_HULL;
  using Dt::OUTSIDE_AFFINE_HULL;
  using Dt::vertex_triple_index;
  using Dt::is_infinite;
  using Dt::is_Gabriel;
  using Dt::incident_cells;
  using Dt::incident_vertices;
  using Dt::incident_facets;
  using Dt::locate;

  enum Classification_type {EXTERIOR, 
			    SINGULAR, 
			    REGULAR,
			    INTERIOR};
 
  enum Mode {GENERAL, REGULARIZED};


  typedef CGAL::Alpha_status< NT >          Alpha_status;
  typedef Compact_container<Alpha_status>   Alpha_status_container;
  typedef typename Alpha_status_container::const_iterator 
                                            Alpha_status_const_iterator;
  typedef typename Alpha_status_container::iterator 
                                            Alpha_status_iterator;
  typedef std::vector< NT >                 Alpha_spectrum;

  typedef std::multimap< NT, Cell_handle >  Alpha_cell_map;
  typedef std::multimap< NT, Facet>         Alpha_facet_map;
  typedef std::multimap< NT, Edge >         Alpha_edge_map;
  typedef std::multimap< NT, Vertex_handle> Alpha_vertex_map;

  typedef std::pair<Vertex_handle, Vertex_handle> Vertex_handle_pair;
  typedef std::map<Vertex_handle_pair,Alpha_status_iterator> Edge_alpha_map;

  typedef typename std::list< Vertex_handle >::iterator 
                                            Alpha_shape_vertices_iterator;
  typedef typename std::list< Facet >::iterator
                                            Alpha_shape_facets_iterator;
  
  //test if a cell is exterior to the alphashape
  class Exterior_cell_test{
    const Alpha_shape_3 * _as;
  public:
    Exterior_cell_test() {}
    Exterior_cell_test(const Alpha_shape_3 * as) {_as = as;}
    bool operator() ( const Finite_cells_iterator& fci) const {
      return _as->classify(fci) == EXTERIOR ;
    }
  };

  typedef Filter_iterator< Finite_cells_iterator, Exterior_cell_test>
  Alpha_shape_cells_iterator;
  typedef typename Alpha_spectrum::const_iterator Alpha_iterator;
  // An iterator that allow to traverse the sorted sequence of
  // different alpha-values. The iterator is bidirectional and
  // non-mutable. Its value-type is NT

private:
  typedef Unique_hash_map<Cell_handle, bool > Marked_cell_set;

private:
  NT _alpha;
  NT _alpha_solid;
  Mode _mode;
  mutable bool use_vertex_cache;
  mutable bool use_facet_cache;

  // only finite facets and simplices are inserted into the maps
  Alpha_cell_map     alpha_cell_map;
  Alpha_facet_map    alpha_min_facet_map;
  Alpha_edge_map     alpha_min_edge_map;
  Alpha_vertex_map   alpha_min_vertex_map;

  Alpha_spectrum             alpha_spectrum;
  Alpha_status_container     alpha_status_container;

  Edge_alpha_map edge_alpha_map;

  //deprecated - for backward compatibility
  mutable std::list< Vertex_handle > alpha_shape_vertices_list;
  mutable std::list< Facet > alpha_shape_facets_list;


  //------------------------- CONSTRUCTORS ------------------------------
public:
  // Introduces an empty alpha-shape `A' for a 
  // alpha-value `alpha'. 
  Alpha_shape_3(NT alpha = 0, 
		Mode m = REGULARIZED)
    : _alpha(alpha), _mode(m), 
      use_vertex_cache(false), use_facet_cache(false)
    {}

  Alpha_shape_3(Dt& dt, NT alpha = 0, Mode m = REGULARIZED)
    :_alpha(alpha), _mode(m), 
    use_vertex_cache(false), use_facet_cache(false)
    {
      Dt::swap(dt);
      if (dimension() == 3) initialize_alpha();
    }
 
  // Introduces an alpha-shape `A' for the alpha-value
  // `alpha' that is initialized with the points in the range
  // from first to last

  template < class InputIterator >  
  Alpha_shape_3(const InputIterator& first,  
		const InputIterator& last,  
		const NT& alpha = 0,
		Mode m = REGULARIZED)
    : _alpha(alpha), _mode(m), 
    use_vertex_cache(false), use_facet_cache(false)
    {
      Dt::insert(first, last);
      if (dimension() == 3)	  initialize_alpha();
    }
 
public:

  //----------------------- OPERATIONS ---------------------------------


  template < class InputIterator >  
  std::ptrdiff_t make_alpha_shape(const InputIterator& first, 
                                  const InputIterator& last)
    {
      clear();
      size_type n = Dt::insert(first, last);
      if (dimension() == 3){
        initialize_alpha();
      }
      return n;
    }

  // Introduces an alpha-shape `A' 
  // that is initialized with the points in the range
  // from first to last

private :

  //--------------------- INITIALIZATION OF PRIVATE MEMBERS -----------
  // called with reinitialize=false on first initialization
  // reinitialize=true when switching the mode.
  void initialize_alpha_cell_map();
  void initialize_alpha_facet_maps(bool reinitialize = false);
  void initialize_alpha_edge_maps(bool reinitialize = false);
  void initialize_alpha_vertex_maps(bool reinitialize = false);
  void initialize_alpha_spectrum();
  void initialize_alpha(bool reinitialize = false) {
    if (reinitialize == false) initialize_alpha_cell_map();
    initialize_alpha_facet_maps(reinitialize);
    initialize_alpha_edge_maps(reinitialize);
    initialize_alpha_vertex_maps(reinitialize);
    initialize_alpha_spectrum();
  }

private :
  Vertex_handle_pair
  make_vertex_handle_pair( Vertex_handle v1, Vertex_handle v2) const {
    return v1 < v2 ? std::make_pair(v1,v2)
                   : std::make_pair(v2,v1);
  }

 // the version to be used with Tag_true is templated to avoid
 // instanciation through explicit instantiation of the whole class
  void set_alpha_min_of_vertices(Tag_false) 
  { 
    for( Finite_vertices_iterator vit = finite_vertices_begin(); 
	 vit != finite_vertices_end();  ++vit){
      Alpha_status* as = vit->get_alpha_status();
      as->set_is_Gabriel(true);  
      as->set_alpha_min(NT(0));
    }
    // insert a single vertex into the map because they all have the 
    // same alpha_min value
    alpha_min_vertex_map.insert(typename Alpha_vertex_map::value_type
				( NT(0), finite_vertices_begin()));
  }
  template <class Tag>
  void set_alpha_min_of_vertices(Tag) 
  {
    for( Finite_vertices_iterator vit = finite_vertices_begin(); 
	 vit != finite_vertices_end();  ++vit) {
      if (is_Gabriel(vit)) {
	Alpha_status* as = vit->get_alpha_status();
	as->set_is_Gabriel(true);  
	as->set_alpha_min(squared_radius(vit));      
	alpha_min_vertex_map.insert(typename Alpha_vertex_map::value_type
				    (as->alpha_min(),vit));
      }
    }
    return;
  }



  //---------------------------------------------------------------------

public:

  void clear()
    {
      // clears the structure
      alpha_status_container.clear();
      Dt::clear();

      alpha_cell_map.clear();
      alpha_min_facet_map.clear();
      alpha_min_edge_map.clear();
      alpha_min_vertex_map.clear();
   
      alpha_spectrum.clear();

      alpha_shape_vertices_list.clear();
      alpha_shape_facets_list.clear();

      use_vertex_cache = false;
      use_facet_cache = false;
    }

  //---------------------------------------------------------------------

public:

  NT set_alpha(const NT& alpha)
    // Sets the alpha-value to `alpha'. Precondition: `alpha' >= 0.
    // Returns the previous alpha
    {
      NT previous_alpha = _alpha;
      _alpha = alpha;
      use_vertex_cache = false;
      use_facet_cache = false;
      return previous_alpha;
    }

  const NT&  get_alpha() const
    // Returns the current alpha-value.
    {
      return _alpha;
    }
  

  const NT&  get_nth_alpha(int n) const
    // Returns the n-th alpha-value.
    // n < size()
    {
      CGAL_triangulation_assertion( n > 0 && 
		      n <= static_cast<int>(alpha_spectrum.size()) );
      return alpha_spectrum[n-1];
    }
  
  size_type number_of_alphas() const
    // Returns the number of different alpha-values
    {
      return alpha_spectrum.size();
    }

  const Edge_alpha_map* get_edge_alpha_map() const
  {
     return  &edge_alpha_map;
  }    
    
  //---------------------------------------------------------------------

private:

  // the dynamic version is not yet implemented
  // desactivate the tetrahedralization member functions
  void insert(const Point& /*p*/) {}
  // Inserts point `p' in the alpha shape and returns the
  // corresponding vertex of the underlying Delaunay tetrahedralization.
  // If point `p' coincides with an already existing vertex, this
  // vertex is returned and the alpha shape remains unchanged.
  // Otherwise, the vertex is inserted in the underlying Delaunay
  // tetrahedralization and the associated intervals are updated.

  void remove(Vertex_handle /*v*/) {}
  // Removes the vertex from the underlying Delaunay tetrahedralization.
  // The created hole is retriangulated and the associated intervals
  // are updated.

  //---------------------------------------------------------------------

public:

  Mode set_mode(Mode mode = REGULARIZED )
    // Sets `A' to its general or regularized version. Returns the
    // previous mode.
    {
      Mode previous_mode = _mode;
      _mode = mode;
      if (previous_mode != _mode) {
	initialize_alpha(true);
	use_vertex_cache = false;
	use_facet_cache = false;
      }
      return previous_mode;
    }

  Mode get_mode() const
    // Returns whether `A' is general or regularized.
    {
      return _mode;
    }

  //---------------------------------------------------------------------
private:

  void  update_alpha_shape_vertex_list() const;
  void  update_alpha_shape_facet_list() const; 

  //---------------------------------------------------------------------
public:

  Alpha_shape_vertices_iterator alpha_shape_vertices_begin() const
  {
    if(!use_vertex_cache)    update_alpha_shape_vertex_list();
    return alpha_shape_vertices_list.begin();
  }

  Alpha_shape_vertices_iterator Alpha_shape_vertices_begin() const
    {
      return alpha_shape_vertices_begin();
    }
  //---------------------------------------------------------------------

  Alpha_shape_vertices_iterator alpha_shape_vertices_end() const
    {
      return alpha_shape_vertices_list.end();
    }

  Alpha_shape_vertices_iterator Alpha_shape_vertices_end() const
    {
      return alpha_shape_vertices_end();
    }

  //---------------------------------------------------------------------

  Alpha_shape_facets_iterator alpha_shape_facets_begin() const
    {
      if(! use_facet_cache)	update_alpha_shape_facet_list();
      return alpha_shape_facets_list.begin();
    }

  Alpha_shape_facets_iterator Alpha_shape_facets_begin() const
    {
      return alpha_shape_facets_begin();
    }

  //---------------------------------------------------------------------

  Alpha_shape_facets_iterator alpha_shape_facets_end() const
    {
      return alpha_shape_facets_list.end();
    }

  Alpha_shape_facets_iterator Alpha_shape_facets_end() const
    {
      return alpha_shape_facets_end();
    }

  Alpha_shape_cells_iterator alpha_shape_cells_begin() const 
    {
      return CGAL::filter_iterator(finite_cells_end(),
			           Exterior_cell_test(this),
			           finite_cells_begin());
    }
  
  Alpha_shape_cells_iterator alpha_shape_cells_end() const
    {
      return CGAL::filter_iterator(finite_cells_end(),
			           Exterior_cell_test(this));
    }


public: 
  
  // Traversal of the alpha-Values
  // 
  // The alpha shape class defines an iterator that allows to
  // visit the sorted sequence of alpha-values. This iterator is
  // non-mutable and bidirectional. Its value type is NT.

  Alpha_iterator alpha_begin() const { return alpha_spectrum.begin(); }
  Alpha_iterator alpha_end() const {return alpha_spectrum.end();}

  Alpha_iterator alpha_find(const NT& alpha) const
    // Returns an iterator pointing to an element with alpha-value
    // `alpha', or the corresponding past-the-end iterator if such an
    // element is not found.
    {
      return std::find(alpha_spectrum.begin(),
		       alpha_spectrum.end(),
		       alpha);
    }

  Alpha_iterator alpha_lower_bound(const NT& alpha) const
    // Returns an iterator pointing to the first element with
    // alpha-value not less than `alpha'.
    {
      return std::lower_bound(alpha_spectrum.begin(),
			      alpha_spectrum.end(),
			      alpha);
    }

  Alpha_iterator alpha_upper_bound(const NT& alpha) const
    // Returns an iterator pointing to the first element with
    // alpha-value greater than `alpha'.
    {
      return std::upper_bound(alpha_spectrum.begin(),
			      alpha_spectrum.end(),
			      alpha);
    }

  //--------------------- PREDICATES -----------------------------------
public:
  void compute_edge_status( const Cell_handle&  c, 
			    int i, 
			    int j, 
			    Alpha_status& as) const;

  Classification_type classify(const Alpha_status& as, const NT& alpha) const;
  Classification_type classify(const Alpha_status* as, const NT& alpha) const;
  Classification_type classify(const Alpha_status_const_iterator as, 
			       const NT& alpha) const;

public:

    Classification_type  classify(const Point& p) const
    {
      return classify(p, get_alpha());
    }

  
  Classification_type  classify(const Point& p,   
				const NT& alpha) const
    // Classifies a point `p' with respect to `A'.
    {
      Locate_type type;
      int i, j;
      Cell_handle pCell = locate(p, type, i, j);
      switch (type)
	{
	case VERTEX            : return classify(pCell->vertex(i), alpha);
	case EDGE              : return classify(pCell, i, j, alpha);
	case FACET             : return classify(pCell, i, alpha);
	case CELL              : return classify(pCell, alpha);
	case OUTSIDE_CONVEX_HULL : return EXTERIOR;
	case OUTSIDE_AFFINE_HULL : return EXTERIOR;
	default                : return EXTERIOR;
	};
    }
 
  //---------------------------------------------------------------------

  Classification_type  classify(const Cell_handle& s) const
    // Classifies the cell `f' of the underlying Delaunay
    // tetrahedralization with respect to `A'.
    {
      return classify(s, get_alpha());
    }
  
  Classification_type  classify(const Cell_handle& s, 
				const NT& alpha) const
    // Classifies the cell `f' of the underlying Delaunay
    // tetrahedralization with respect to `A'.
      // s->radius == alpha => f interior
    {
      if (is_infinite(s)) return EXTERIOR;
      return (s->get_alpha() <=  alpha) ? INTERIOR : EXTERIOR;
    }

  //---------------------------------------------------------------------
 
  Classification_type  classify(const Facet& f) const
    {  
      return classify(f.first, f.second, get_alpha());
    }

  
  Classification_type  classify(const Cell_handle& s, 	int i) const
    {  
      return classify(s, i, get_alpha());
    }

  Classification_type  classify(const Facet& f,	const NT& alpha) const
    {  
      return classify(f.first, f.second, alpha);
    }

  Classification_type  classify(const Cell_handle& s, 
				int i,
				const NT& alpha) const;
  // Classifies the face `f' of the underlying Delaunay
  // tetrahedralization with respect to `A'.

  //---------------------------------------------------------------------

  Classification_type  classify(const Edge& e) const
    {  
      return classify(e.first, e.second, e.third, get_alpha());
    }

  
  Classification_type  classify(const Cell_handle& s, 
				int i,
 				int j) const
    {  
      return classify(s, i, j, get_alpha());
    }

  Classification_type  classify(const Edge& e,
				const NT& alpha ) const
    {  
      return classify(e.first, e.second, e.third, alpha);
    }

  Classification_type  classify(const Cell_handle& s, 
				int i,
				int j,
				const NT& alpha) const;
  // Classifies the edge `e' of the underlying Delaunay
  // tetrahedralization with respect to `A'.
  

  //---------------------------------------------------------------------

  Classification_type  classify(const Vertex_handle& v) const
    {
      return classify(v, get_alpha());
    }

  Classification_type  classify(const Vertex_handle& v,
				const NT& alpha) const;
  // Classifies the vertex `v' of the underlying Delaunay
  // tetrahedralization with respect to `A'.


  //--------------------- NB COMPONENTS ---------------------------------
  size_type
  number_solid_components() const
    {
      return number_of_solid_components(get_alpha());
    }

  size_type
  number_of_solid_components() const
    {
      return number_of_solid_components(get_alpha());
    }

  size_type
  number_solid_components(const NT& alpha) const
    {
      return number_of_solid_components(alpha);
    }

  size_type
  number_of_solid_components(const NT& alpha) const;
  // Determine the number of connected solid components 
  // takes time O(#alpha_shape) amortized if STL_HASH_TABLES
  //            O(#alpha_shape log n) otherwise

private:

  void traverse(Cell_handle pCell,
		Marked_cell_set& marked_cell_set, 
		const NT alpha) const;
 
  //----------------------------------------------------------------------

public:

  Alpha_iterator find_optimal_alpha(size_type nb_components) const;
  // find the minimum alpha that satisfies the properties
  // (1) all data points are on the boundary of some 3d component
  //    or in its interior
  // (2) the nb of solid components is equal or less than nb_component
  
  NT find_alpha_solid() const;
  // compute the minumum alpha such that all data points 
  // are either on the boundary or in the interior
  // not necessarily connected
  // starting point for searching 
  // takes O(#alpha_shape) time


  //------------------- GEOMETRIC PRIMITIVES ----------------------------
private:
  NT squared_radius(const Cell_handle& s) const
    {
      return Compute_squared_radius_3()(*this)(
	  this->point(s,0), this->point(s,1),
	  this->point(s,2), this->point(s,3));
    }

  NT squared_radius(const Cell_handle& s, const int& i) const
    {
      return Compute_squared_radius_3()(*this) (
	  this->point(s,vertex_triple_index(i,0)),
	  this->point(s,vertex_triple_index(i,1)),
	  this->point(s,vertex_triple_index(i,2)) );
    }

  NT squared_radius(const Facet& f) const {
    return squared_radius(f.first, f.second);
  }

  NT squared_radius(const Cell_handle& s, 
			    const int& i, const int& j) const
    {
      return Compute_squared_radius_3()(*this)(
	  this->point(s,i), this->point(s,j));
    }

  NT squared_radius(const Edge& e) const {
   return  squared_radius(e.first,e.second,e.third);
  }

  NT squared_radius(const Vertex_handle& v) const {
    return  Compute_squared_radius_3()(*this)(v->point()); 
  }


  //---------------------------------------------------------------------

private:
  // prevent default copy constructor and default assigment
  Alpha_shape_3(const Alpha_shape_3&);
  void operator=(const Alpha_shape_3&);

  //---------------------------------------------------------------------
public:  
#ifdef CGAL_USE_GEOMVIEW
  void show_alpha_shape_faces(Geomview_stream &gv) const;
#endif


  // to Debug
  void print_maps() const; 
  void print_alphas() const;
  void print_alpha_status( const Alpha_status& as) const;
  

  // To extract the alpha_shape faces for a given alpha value



  template<class OutputIterator>
  OutputIterator get_alpha_shape_cells(OutputIterator it, 
				       Classification_type type,
				       const NT& alpha) const
  {
    Finite_cells_iterator cit = finite_cells_begin();
    for( ; cit != finite_cells_end() ; ++cit){
      if (classify(cit, alpha) == type) *it++ = Cell_handle(cit);
    }
    return it;
  }

  template<class OutputIterator>
  OutputIterator get_alpha_shape_facets(OutputIterator it, 
					Classification_type type,
					const NT& alpha) const
  {
    Finite_facets_iterator fit = finite_facets_begin();
    for( ; fit != finite_facets_end() ; ++fit){
      if (classify(*fit, alpha) == type) *it++ = *fit;
    }
    return it;
  }

  template<class OutputIterator>
  OutputIterator get_alpha_shape_edges(OutputIterator it, 
				       Classification_type type,
				       const NT& alpha) const
  {
    Finite_edges_iterator eit = finite_edges_begin();
    for( ; eit != finite_edges_end() ; ++eit){
      if (classify(*eit, alpha) == type) *it++ = *eit;
    }
    return it;
  }

  template<class OutputIterator>
   OutputIterator get_alpha_shape_vertices(OutputIterator it, 
					   Classification_type type,
					   const NT& alpha) const
  {
    Finite_vertices_iterator vit = finite_vertices_begin();
    for( ; vit != finite_vertices_end() ; ++vit){
      if (classify(vit, alpha) == type) *it++ = Vertex_handle(vit);
    }
    return it;
  }

  template<class OutputIterator>
  OutputIterator get_alpha_shape_cells(OutputIterator it, 
				       Classification_type type) const
  { return get_alpha_shape_cells(it, type, get_alpha());}

  template<class OutputIterator>
  OutputIterator get_alpha_shape_facets(OutputIterator it, 
				       Classification_type type) const
  { return get_alpha_shape_facets(it, type, get_alpha());}

  template<class OutputIterator>
  OutputIterator get_alpha_shape_edges(OutputIterator it, 
				       Classification_type type) const
  { return get_alpha_shape_edges(it, type, get_alpha());}

  template<class OutputIterator>
  OutputIterator get_alpha_shape_vertices(OutputIterator it, 
				       Classification_type type) const
  { return get_alpha_shape_vertices(it, type, get_alpha());}

   template<class OutputIterator> 
   OutputIterator filtration(OutputIterator it)  const
   // scan  the  alpha_cell_map, alpha_min_facet_map,  alpha_min_edge_map  
   // and alpha_min_vertex in GENERAL mode 
   // only alpha_cell_map in REGULARIZED mode 
   // and output all the faces in order of alpha value of their appearing 
   // in the alpha complexe 
   { 
     typename Alpha_cell_map::const_iterator cit ;
     typename Alpha_facet_map::const_iterator fit ;
     typename Alpha_edge_map::const_iterator eit ;
     typename Alpha_vertex_map::const_iterator vit;
  
     if (get_mode() == GENERAL) {
       cit = alpha_cell_map.begin();
       fit = alpha_min_facet_map.begin();
       eit = alpha_min_edge_map.begin();
       vit = alpha_min_vertex_map.begin();
     }
     else { //mode==REGULARIZED do not scan maps of Gabriel elements
       cit = alpha_cell_map.begin();
       fit = alpha_min_facet_map.end();
       eit = alpha_min_edge_map.end();
       vit = alpha_min_vertex_map.end();
     }

     // sets to avoid multiple output of the same face 
     // as a regular subfaces of different faces 
     std::set<Facet>  facet_set; 
     std::set<Vertex_handle_pair>   edge_set; 
     std::set<Vertex_handle> vertex_set; 
     NT alpha_current = 0; 

     while (cit != alpha_cell_map.end()) { 

       if ( vit != alpha_min_vertex_map.end()  
 	   && (eit == alpha_min_edge_map.end() || (vit->first <= eit->first)) 
 	   && (fit == alpha_min_facet_map.end()|| (vit->first <= fit->first)) 
 	   && (cit == alpha_cell_map.end()     || (vit->first <= cit->first))) 
 	{ 
 	  //advance on vit 
 	  filtration_set_management(vit, alpha_current, 
 				    facet_set, edge_set, vertex_set); 
 	  filtration_output(vit->first, vit->second, it); 
 	  vit++; 
 	} 

       if ( eit != alpha_min_edge_map.end()  
 	 && ( fit == alpha_min_facet_map.end() || (eit->first <= fit->first) ) 
 	 && ( cit == alpha_cell_map.end()      || (eit->first <= cit->first) ) 
 	 && ( vit == alpha_min_vertex_map.end()|| (vit->first >  eit->first) ) 
 	 ) {      //advance on eit 
	 filtration_set_management(eit, alpha_current, 
 				    facet_set, edge_set, vertex_set); 
 	filtration_output(eit->first, eit->second, it, vertex_set); 
 	eit++; 
       } 

       if ( fit != alpha_min_facet_map.end()  
 	 && (cit == alpha_cell_map.end()      || (fit->first <= cit->first)) 
 	 && (eit == alpha_min_edge_map.end()  || (eit->first >  fit->first))  
 	 && (vit == alpha_min_vertex_map.end()|| (vit->first >  fit->first)) 
 	 ) {      //advance on fit 
	 filtration_set_management(fit, alpha_current, 
 				  facet_set, edge_set, vertex_set); 
	 filtration_output(fit->first, fit->second, it,  
			   edge_set, vertex_set); 
 	fit++; 
       } 

       if ( cit != alpha_cell_map.end()  
 	 && (fit == alpha_min_facet_map.end() || (fit->first > cit->first) ) 
 	 && (eit == alpha_min_edge_map.end()  || (eit->first > cit->first) ) 
 	 && (vit == alpha_min_vertex_map.end()|| (vit->first > cit->first) ) 
 	 ) {      //advance on cit 
	 filtration_set_management(cit, alpha_current, 
 				    facet_set, edge_set, vertex_set); 
	 filtration_output(cit->first, cit->second, it,
			   facet_set, edge_set, vertex_set); 
 	cit++; 
       } 
     } 
     return it; 
   } 

  private: 

   template<class Alpha_face_iterator> 
   void 
     filtration_set_management ( Alpha_face_iterator afit, 
 				NT& alpha_current, 
 				std::set<Facet>&  facet_set, 
 				std::set<Vertex_handle_pair>&   edge_set, 
 				std::set<Vertex_handle>& vertex_set)  const
   { 
     if (afit->first != alpha_current) { //new alpha_value 
       alpha_current = afit->first; 
       facet_set.clear(); 
       edge_set.clear(); 
       vertex_set.clear(); 
     } 
     return; 
   } 

   template<class OutputIterator> 
   OutputIterator   
   filtration_output( const NT & /*alpha*/,  
 		     Vertex_handle vh,  
 		     OutputIterator it,  
 		     Tag_true)   const 
   { 
     it++ = make_object(vh); 
     //std::cerr << "filtration " << alpha << " \t  VERTEX " << std::endl; 
     return it; 
   } 

   template<class OutputIterator> 
   OutputIterator   
   filtration_output( const NT& /*alpha*/,  
 		     Vertex_handle vh,  
 		     OutputIterator it,  
 		     Tag_false)     const 
   { 
     // when Delaunay, the alpha_min_vertex_map contains a single vertex 
     // because all vertices are Gabriel with the same alpha_min=0 
     // this affects only the GENERAL mode
     if (get_mode() == GENERAL){
       Finite_vertices_iterator vit=finite_vertices_begin(); 
       for( ; vit != finite_vertices_end(); vit++) { 
	 it++ = make_object( Vertex_handle(vit)); 
       } 
     }
     else {
       it++ = make_object(vh);
     }
     //std::cerr << "filtration " << alpha << " \t  VERTEX " << std::endl; 
     return it; 
   } 

   template<class OutputIterator> 
   OutputIterator   
   filtration_output( const NT& alpha,  
 		     Vertex_handle vh,  
 		     OutputIterator it) const 
   { 
     return filtration_output(alpha, vh, it, Weighted_tag()); 
   } 


  template<class OutputIterator> 
  OutputIterator   
  filtration_output( const NT& alpha,  
 		    Edge e,  
 		    OutputIterator it, 
 		    std::set<Vertex_handle>& vertex_set) const 
  { 
    Vertex_handle vh[] = {e.first->vertex(e.second),  
 			  e.first->vertex(e.third)}; 
    for(int i=0; i<2; i++) { 
      Alpha_status* as = vh[i]->get_alpha_status(); 
      if ( (get_mode()== REGULARIZED || !as->is_Gabriel())   
 	  && as->alpha_mid() == alpha  
 	  && vertex_set.find(vh[i]) == vertex_set.end() ) { 
        filtration_output( alpha, vh[i], it); 
        vertex_set.insert(vh[i]); 
      } 
    } 
    it++ = make_object(e); 
    //std::cerr << "filtration " << alpha << " \t EDGE " << std::endl; 
    return it; 
  } 
   
  template<class OutputIterator> 
  OutputIterator 
  filtration_output( const NT& alpha,  
 		    Facet f,  
 		    OutputIterator it, 
 		    std::set<Vertex_handle_pair>& edge_set, 
 		    std::set<Vertex_handle>& vertex_set ) const 
  { 
    Cell_handle c = f.first; 
    int facet_index = f.second; 

    for(int k=0; k<3; k++) { 
      int i = vertex_triple_index(facet_index, k ); 
      int j = vertex_triple_index(facet_index, this->ccw(k)); 
      Alpha_status as; 
      Vertex_handle_pair 
 	 vhp = make_vertex_handle_pair(c->vertex(i),c->vertex(j));

      if (get_mode() == GENERAL) { 
	as = *(edge_alpha_map.find(vhp)->second); 
      } 
      else{ //no edge map in REGULARIZED mode - classify on the fly 
	compute_edge_status( c, i, j, as); 
      } 
     
      if ( (get_mode()== REGULARIZED || !as.is_Gabriel())
	   && as.alpha_mid() == alpha  
	   && edge_set.find(vhp)== edge_set.end() ) {
	filtration_output( alpha, make_triple(c,i,j), it, vertex_set); 
        edge_set.insert(vhp); 
      } 
    } 

    it++ = make_object(f); 
    //std::cerr << "filtration " << alpha << " \t FACET " << std::endl; 
    return it; 
  } 

  template<class OutputIterator> 
  OutputIterator 
  filtration_output( const NT& alpha,  
 		    Cell_handle c,  
 		    OutputIterator it, 
 		    std::set<Facet>& facet_set, 
 		    std::set<Vertex_handle_pair>& edge_set, 
 		    std::set<Vertex_handle>& vertex_set) const 
  { 
    for(int i=0; i<4; i++) { 
      Alpha_status_iterator as = c->get_facet_status(i); 
      Facet f = std::make_pair(c,i); 
      if ((get_mode()== REGULARIZED || !as->is_Gabriel())
	   && as->alpha_mid() == alpha  
	   && facet_set.find(f) == facet_set.end() 
	   && facet_set.find(std::make_pair(c->neighbor(i), 
					    this->mirror_index(c, i)))
	      == facet_set.end()) { 
        filtration_output( alpha, f, it, edge_set, vertex_set); 
        facet_set.insert(f); 
      } 
    } 

    it++ = make_object(c); 
    //std::cerr << "filtration " << alpha << " \t CELL " << std::endl; 
    return it; 
  } 
 
  
};



//---------------------------------------------------------------------
//--------------------- MEMBER FUNCTIONS-------------------------------
//---------------------------------------------------------------------


//--------------------- INITIALIZATION OF PRIVATE MEMBERS -------------
  
template <class Dt,class EACT>
void 
Alpha_shape_3<Dt,EACT>::initialize_alpha_cell_map()
{ 
  Finite_cells_iterator cell_it, done = finite_cells_end();
  NT alpha ;

  for( cell_it = finite_cells_begin(); cell_it != done; ++cell_it) {
    alpha = squared_radius(cell_it);
    alpha_cell_map.insert(typename Alpha_cell_map::value_type(alpha, cell_it));

    // cross references
    cell_it->set_alpha(alpha);
  }
  return;
}


//---------------------------------------------------------------------

template <class Dt,class EACT>
void 
Alpha_shape_3<Dt,EACT>::initialize_alpha_facet_maps(bool reinitialize)
{
  Finite_facets_iterator fit;  
  Cell_handle pCell, pNeighbor ;
  int i, iNeigh;
  Alpha_status_iterator as;

  if (!reinitialize) {
    NT alpha_max, alpha_mid;
    for( fit = finite_facets_begin(); 
	 fit != finite_facets_end(); ++fit)   {

      as = alpha_status_container.insert(Alpha_status());
  
      pCell = fit->first;
      i = fit->second;
      pNeighbor = pCell->neighbor(i);
      iNeigh = pNeighbor->index(pCell);
  
      // not on the convex hull
      if(!is_infinite(pCell) && !is_infinite(pNeighbor))	{ 
	NT alpha_Cell = pCell->get_alpha();
	NT alpha_Neighbor = pNeighbor->get_alpha();
	if ( alpha_Cell < alpha_Neighbor) {
	  alpha_mid = alpha_Cell;
	  alpha_max = alpha_Neighbor;
	}
	else {
	  alpha_mid = alpha_Neighbor;
	  alpha_max = alpha_Cell;
	}
	as->set_is_on_chull(false);
	as->set_alpha_mid(alpha_mid);
	as->set_alpha_max(alpha_max);
	//	alpha_mid_facet_map.insert(typename
	//	                 Alpha_facet_map::value_type(alpha_mid, *fit));
      }
      else { // on the convex hull
	alpha_mid = !is_infinite(pCell) ? pCell->get_alpha() 
	                                : pNeighbor->get_alpha();
	as->set_alpha_mid(alpha_mid);
	as->set_is_on_chull(true);
      }

      //cross links
      pCell->set_facet_status(i, as);
      pNeighbor->set_facet_status(iNeigh,as);
    }
  }
    
  // initialize alpha_min if mode GENERAL 
  if(get_mode() == GENERAL &&  alpha_min_facet_map.empty()) {
    //already done if !alpha_min_facet_map.empty()
    NT alpha_min;
    for( fit = finite_facets_begin(); 
	 fit != finite_facets_end(); ++fit)   {
      as = fit->first->get_facet_status(fit->second);
      if (is_Gabriel(*fit)) {
	as->set_is_Gabriel(true);
	alpha_min = squared_radius(*fit);
	as->set_alpha_min(alpha_min);
	alpha_min_facet_map.insert(typename
		                 Alpha_facet_map::value_type(alpha_min, *fit));
      }
      else as->set_is_Gabriel(false);
    }
  }
  return;
 }

template <class Dt,class EACT>
void 
Alpha_shape_3<Dt,EACT>::initialize_alpha_edge_maps(bool )
{
  // alpha_status for edges, edge_alpha_map 
  // and alpha_mid_edge and alpha_min_edge
  // are initialized only in GENERAL mode
  if(get_mode() == REGULARIZED) {return;} //no_edge_map in REGULARIZED mode
  if ( !edge_alpha_map.empty()) return; // already done

  Finite_edges_iterator eit;
  Alpha_status_iterator as;

  for (eit = finite_edges_begin(); 
       eit != finite_edges_end(); ++eit) {
    as = alpha_status_container.insert(Alpha_status());
    compute_edge_status(eit->first, eit->second, eit->third, *as);
    if ( as->is_Gabriel()) {
      alpha_min_edge_map.insert(typename
				Alpha_edge_map::value_type(as->alpha_min(),
							   *eit));
    }
     //cross links
    Vertex_handle_pair 
      vhp = make_vertex_handle_pair( eit->first->vertex(eit->second),
				     eit->first->vertex(eit->third));
    edge_alpha_map.insert(std::make_pair(vhp, as));
  }
  return;
}

template <class Dt,class EACT>
void 
Alpha_shape_3<Dt,EACT>::initialize_alpha_vertex_maps(bool reinitialize)
{
  //for a vertex 
  // alpha_max =  max of alpha values of incident cells
  // alpha_mid =  min of alpha values of incident cells in REGULAR mode
  //           =  min of alpha values of incidents faces in GENERAL mode
  // alpha_min = -squared_radius of weighted point, 
  //              if the vertex is Gabriel set only in GENERAL mode

  NT alpha, alpha_mid;
  Finite_vertices_iterator vit;

  if (reinitialize == false) _alpha_solid = alpha_cell_map.begin()->first;

  for( vit = finite_vertices_begin(); 
	 vit != finite_vertices_end();	 ++vit) {
    Alpha_status*  as = vit->get_alpha_status();

    if (reinitialize == false) {
      // set is_on_chull, compute alpha_max 
      // and alpha_mid (version REGULAR)
      // compute _alpha_solid (max of alpha_mid of vertices in REGULAR mode)
      as->set_is_on_chull(false);
      std::list<Cell_handle> incidents;
      incident_cells(static_cast<Vertex_handle>(vit),
	             back_inserter(incidents));
      typename std::list<Cell_handle>::iterator chit=incidents.begin();
      if (is_infinite(*chit)) as->set_is_on_chull(true);
      while (is_infinite(*chit)) ++chit; //skip infinte cells
      alpha = (*chit)->get_alpha();
      as->set_alpha_mid(alpha);
      as->set_alpha_max(alpha);
      ++chit;
      for( ; chit != incidents.end(); ++chit) {
	if (is_infinite(*chit)) as->set_is_on_chull(true);
	else {
	  alpha = (*chit)->get_alpha();
	  if (alpha < as->alpha_mid()) as->set_alpha_mid(alpha);
	  if (alpha > as->alpha_max()) as->set_alpha_max(alpha);
	}
      }
      if (as->alpha_mid() > _alpha_solid)  _alpha_solid = as->alpha_mid();
    }
  
    if (get_mode() == GENERAL) { //reset alpha_mid,  set alph_min
      std::list<Vertex_handle> incidentv;
      incident_vertices(static_cast<Vertex_handle>(vit),
			back_inserter(incidentv));
      typename std::list<Vertex_handle>::iterator vvit=incidentv.begin();
      for( ; vvit != incidentv.end(); ++vvit) {
	if (!is_infinite(*vvit)) {
	  Vertex_handle_pair vhp = make_vertex_handle_pair( *vvit, vit);
	  Alpha_status_iterator asedge = edge_alpha_map[vhp];
	  alpha_mid = asedge->is_Gabriel() ? asedge->alpha_min()
	    : asedge->alpha_mid();
	  if ( alpha_mid < as->alpha_mid()) as->set_alpha_mid(alpha_mid);
	}
      }
    }

    if (get_mode()== REGULARIZED && reinitialize == true) {
      // reset alpha_mid
      std::list<Cell_handle> incidents;
      incident_cells(static_cast<Vertex_handle>(vit),
		     back_inserter(incidents));
      typename std::list<Cell_handle>::iterator chit=incidents.begin();
      while (is_infinite(*chit)) ++chit; //skip infinte cells
      alpha = (*chit)->get_alpha();
      as->set_alpha_mid(alpha);
      for( ; chit != incidents.end(); ++chit) {
	if (is_infinite(*chit)) as->set_is_on_chull(true);
	else {
	  alpha = (*chit)->get_alpha();
	  if (alpha < as->alpha_mid()) as->set_alpha_mid(alpha);
	}
      }
    }
      
  }
 
  // set alpha_min in case GENERAL 
  if (get_mode() == GENERAL && alpha_min_vertex_map.empty()) {
    set_alpha_min_of_vertices(Weighted_tag());
  }
  return;
}



//---------------------------------------------------------------------

template <class Dt,class EACT>
void 
Alpha_shape_3<Dt,EACT>::initialize_alpha_spectrum()
// merges the alpha values of alpha_cell_map 
// and alpha_min_facet_map alpha_min_edge_map alpha_min_vertex in GENERAL mode
// only alpha_cell_map in REGULARIZED mode
{
  typename Alpha_cell_map::iterator cit ;
  typename Alpha_facet_map::iterator fit ;
  typename Alpha_edge_map::iterator eit ;
  typename Alpha_vertex_map::iterator vit;
  alpha_spectrum.clear();

  if (get_mode() == GENERAL) {
    cit = alpha_cell_map.begin();
    fit = alpha_min_facet_map.begin();
    eit = alpha_min_edge_map.begin();
    vit = alpha_min_vertex_map.begin();
    alpha_spectrum.reserve(alpha_cell_map.size() +
			   alpha_min_facet_map.size() +
			   alpha_min_edge_map.size() +
			   alpha_min_vertex_map.size());
  }
  else {
    alpha_spectrum.reserve(alpha_cell_map.size());
    cit = alpha_cell_map.begin();
    fit = alpha_min_facet_map.end();
    eit = alpha_min_edge_map.end();
    vit = alpha_min_vertex_map.end();
  }


  while (cit != alpha_cell_map.end() ||
	 fit != alpha_min_facet_map.end() ||
	 eit != alpha_min_edge_map.end() ) {

    if ( cit != alpha_cell_map.end() 
	 && ( fit == alpha_min_facet_map.end() || !(fit->first < cit->first) )
	 && ( eit == alpha_min_edge_map.end() || !(eit->first < cit->first) )
	 && ( vit == alpha_min_vertex_map.end() || !(vit->first < cit->first) )
	 ) {      //advance on cit
      if (alpha_spectrum.empty() ||  alpha_spectrum.back() < cit->first){
	alpha_spectrum.push_back(cit->first); 
      }
      cit++;
     }

    if ( fit != alpha_min_facet_map.end() 
	 && ( cit == alpha_cell_map.end() || !(cit->first < fit->first) )
	 && ( eit == alpha_min_edge_map.end() || !(eit->first < fit->first) ) 
	 && ( vit == alpha_min_vertex_map.end() || !(vit->first < fit->first) )
	 ) {      //advance on fit
      if (alpha_spectrum.empty() ||  alpha_spectrum.back() < fit->first){
	    alpha_spectrum.push_back(fit->first);
      }
      fit++;
    }

    if ( eit != alpha_min_edge_map.end() 
	 && ( fit == alpha_min_facet_map.end() || !(fit->first < eit->first) )
	 && ( cit == alpha_cell_map.end() || !(cit->first < eit->first) )
	 && ( vit == alpha_min_vertex_map.end() || !(vit->first < eit->first) )
	 ) {      //advance on eit
         if (alpha_spectrum.empty() ||  alpha_spectrum.back() <  eit->first) {
	    alpha_spectrum.push_back(eit->first);
      }
      eit++;
    }

    if ( vit != alpha_min_vertex_map.end() 
	 && ( fit == alpha_min_facet_map.end() || !(fit->first < vit->first) )
	 && ( cit == alpha_cell_map.end() || !(cit->first < vit->first) )
	 && ( eit == alpha_min_edge_map.end() || !(eit->first < vit->first) )
	 ) { //advance on vit
         if (alpha_spectrum.empty() ||  alpha_spectrum.back() <  vit->first) {
	    alpha_spectrum.push_back(vit->first);
      }
      vit++;
    }
  }
}
  


//---------------------------------------------------------------------


#if 0
// Obviously not ready yet
template <class Dt,class EACT>
std::istream& operator>>(std::istream& is,  const Alpha_shape_3<Dt,EACT>& A)
  // Reads a alpha shape from stream `is' and assigns it to
  // Unknown creationvariable. Precondition: The extract operator must
  // be defined for `Point'.
{}
#endif

//---------------------------------------------------------------------

template <class Dt,class EACT>
std::ostream& operator<<(std::ostream& os,  const Alpha_shape_3<Dt,EACT>& A)
  // Inserts the alpha shape into the stream `os' as an indexed face set. 
  // Precondition: The insert operator must be defined for `Point'
{
  typedef Alpha_shape_3<Dt,EACT>                  AS;
  typedef typename AS::size_type             size_type;
  typedef typename AS::Vertex_handle         Vertex_handle;
  typedef typename AS::Cell_handle           Cell_handle;
  typedef typename AS::Alpha_shape_vertices_iterator 
                                             Alpha_shape_vertices_iterator;
  typedef typename AS::Alpha_shape_facets_iterator
                                             Alpha_shape_facets_iterator;

  Unique_hash_map< Vertex_handle, size_type > V;
  size_type number_of_vertices = 0;

  Alpha_shape_vertices_iterator vit;
  for( vit = A.alpha_shape_vertices_begin();
       vit != A.alpha_shape_vertices_end();
       ++vit) {
    V[*vit] = number_of_vertices++;
    os << (*vit)->point() << std::endl;
  }

  Cell_handle c;
  int i;
  Alpha_shape_facets_iterator fit;
  for( fit = A.alpha_shape_facets_begin();
       fit != A.alpha_shape_facets_end();
       ++fit) {
    c = fit->first;
    i = fit->second;
    // the following ensures that regular facets are output
    // in ccw order
    if (A.classify(*fit) == AS::REGULAR && (A.classify(c) == AS::INTERIOR)){
      c = c->neighbor(i);
      i = c->index(fit->first);
    }
    int i0 = Triangulation_utils_3::vertex_triple_index(i,0);
    int i1 = Triangulation_utils_3::vertex_triple_index(i,1);
    int i2 = Triangulation_utils_3::vertex_triple_index(i,2);
    os << V[c->vertex(i0)] << ' ' 
       << V[c->vertex(i1)] << ' ' 
       << V[c->vertex(i2)] << std::endl;
  }
  return os;
}

//---------------------------------------------------------------------

template <class Dt,class EACT>
void
Alpha_shape_3<Dt,EACT>::update_alpha_shape_vertex_list() const
{
  alpha_shape_vertices_list.clear();
  use_vertex_cache = true;

  std::back_insert_iterator<std::list< Vertex_handle > >
    it = back_inserter(alpha_shape_vertices_list);

  get_alpha_shape_vertices(it, REGULAR);
  if (get_mode()==GENERAL) get_alpha_shape_vertices(it, SINGULAR);
  
   return;
}
	 

//---------------------------------------------------------------------

template <class Dt,class EACT>
void
Alpha_shape_3<Dt,EACT>::update_alpha_shape_facet_list() const
{
  alpha_shape_facets_list.clear();
  use_facet_cache = true;
  // Writes the faces of the alpha shape `A' for the current 'alpha'-value
  // to the container where 'out' refers to.

  std::back_insert_iterator<std::list< Facet> >
    it = back_inserter(alpha_shape_facets_list);

  get_alpha_shape_facets(it, REGULAR);
  if (get_mode()==GENERAL) get_alpha_shape_facets(it, SINGULAR);
  
  return;
}



//---------------------------------------------------------------------

template <class Dt,class EACT>
typename Alpha_shape_3<Dt,EACT>::Classification_type  
Alpha_shape_3<Dt,EACT>::classify(const Alpha_status& as,
			    const NT& alpha) const
{
 //tetrahedra with circumradius=alpha are considered inside
  if ( !as.is_on_chull() && alpha >= as.alpha_max()) return INTERIOR;
  else if ( alpha >= as.alpha_mid()) return REGULAR;
  else if ( get_mode() == GENERAL && 
	    as.is_Gabriel() &&
	    alpha >= as.alpha_min()) return SINGULAR;
  else return EXTERIOR;
}

template <class Dt,class EACT>
typename Alpha_shape_3<Dt,EACT>::Classification_type  
Alpha_shape_3<Dt,EACT>::classify(const Alpha_status* as,
			    const NT& alpha) const
{
 //tetrahedra with circumradius=alpha are considered inside
  if ( !as->is_on_chull() && alpha >= as->alpha_max()) return INTERIOR;
  else if ( alpha >= as->alpha_mid()) return REGULAR;
  else if ( get_mode() == GENERAL && 
	    as->is_Gabriel() &&
	    alpha >= as->alpha_min()) return SINGULAR;
  else return EXTERIOR;
}

template <class Dt,class EACT>
typename Alpha_shape_3<Dt,EACT>::Classification_type  
Alpha_shape_3<Dt,EACT>::classify(Alpha_status_const_iterator as,
			    const NT& alpha) const
{
  return classify(&(*as), alpha);
}

template <class Dt,class EACT>
typename Alpha_shape_3<Dt,EACT>::Classification_type  
Alpha_shape_3<Dt,EACT>::classify(const Cell_handle& s, 
			    int i,
			    const NT& alpha) const
  // Classifies the face `f' of the underlying Delaunay
  // tetrahedralization with respect to `A'.
{ 
  if (is_infinite(s,i))   return EXTERIOR;
  Alpha_status_iterator as = s->get_facet_status(i);
  return classify(as, alpha);
}
 

template <class Dt,class EACT>
typename Alpha_shape_3<Dt,EACT>::Classification_type  
Alpha_shape_3<Dt,EACT>::classify(const Cell_handle& c, 
			    int i,
			    int j,
			    const NT& alpha) const
  // Classifies the edge `e' of the underlying Delaunay
  // tetrahedralization with respect to `A'.
{ 
  if (is_infinite(c, i, j))     return EXTERIOR;
  if (get_mode() == GENERAL) {
    Alpha_status_iterator asit;
    Vertex_handle_pair
      vhp=make_vertex_handle_pair(c->vertex(i),c->vertex(j));
    asit = edge_alpha_map.find(vhp)->second;
    return classify(asit,alpha);
  }
  
  //no edge map in REGULARIZED mode - classify on the fly
  Alpha_status as;
  compute_edge_status( c, i, j, as);
  return classify(as, alpha);
}

template <class Dt,class EACT>
void
Alpha_shape_3<Dt,EACT>::
compute_edge_status( const Cell_handle& c, 
		     int i, 
		     int j,  
		     Alpha_status& as) const
{
  Facet_circulator fcirc, done;
  Alpha_status_iterator asf;
  NT alpha;
  as.set_is_on_chull(false);
  
  Cell_circulator ccirc, last;
  ccirc = incident_cells(c,i,j);
  last=ccirc;
  while (is_infinite(ccirc) ) ++ccirc; //skip infinite incident cells
  alpha = (*ccirc).get_alpha();
  as.set_alpha_mid(alpha); // initialise as.alpha_mid to alpha value of an incident cell
  as.set_alpha_max(alpha); // same for as.alpha_max 
  while (++ccirc != last) 
  {
    if (!is_infinite(ccirc)) {
      alpha = (*ccirc).get_alpha();
      if (alpha < as.alpha_mid())
        as.set_alpha_mid(alpha);
      if ( ! as.is_on_chull()) {
        if( as.alpha_max() <  alpha)
          as.set_alpha_max( alpha );
      }
    }
  }   
  
  fcirc = incident_facets(c,i,j);
  done = fcirc;  
  do {
    if (!is_infinite(*fcirc)) {
      asf = (*fcirc).first->get_facet_status((*fcirc).second);
      if (get_mode() == GENERAL && asf->is_Gabriel()){
        alpha = asf->alpha_min();
        if (alpha < as.alpha_mid())  as.set_alpha_mid(alpha);
      }
      if (asf->is_on_chull())
        as.set_is_on_chull(true);
    }
  } while (++fcirc != done);  

  // initialize alphamin
  if ( get_mode() == GENERAL){
    if (is_Gabriel(c,i,j)) {
      alpha = squared_radius(c,i,j);
      as.set_is_Gabriel(true);
      as.set_alpha_min(alpha);
    }
    else as.set_is_Gabriel(false);
  }   
}

//---------------------------------------------------------------------

template <class Dt,class EACT>
typename Alpha_shape_3<Dt,EACT>::Classification_type  
Alpha_shape_3<Dt,EACT>::classify(const Vertex_handle& v,
			    const NT& alpha) const
  // Classifies the vertex `v' of the underlying Delaunay
  // tetrahedralization with respect to `A'.
{
  if (is_infinite(v))     return EXTERIOR;
  Alpha_status* as = v->get_alpha_status();
  return classify(as, alpha);
}

//--------------------- NB COMPONENTS ---------------------------------

template <class Dt,class EACT>
typename Alpha_shape_3<Dt,EACT>::size_type
Alpha_shape_3<Dt,EACT>::number_of_solid_components(const NT& alpha) const
    // Determine the number of connected solid components 
    // takes time O(#alpha_shape) amortized if STL_HASH_TABLES
    //            O(#alpha_shape log n) otherwise
{
  typedef typename Marked_cell_set::Data Data;
  Marked_cell_set marked_cell_set(false);
  Finite_cells_iterator cell_it, done = finite_cells_end();
  size_type nb_solid_components = 0;

  // only finite simplices
  for( cell_it = finite_cells_begin(); cell_it != done; ++cell_it)
    {
      Cell_handle pCell = cell_it;
      CGAL_triangulation_assertion(pCell != NULL);
      
      if (classify(pCell, alpha) == INTERIOR){
	Data& data = marked_cell_set[pCell];
	if(data == false) { 
	  // we traverse only interior simplices
	  data = true;
	  traverse(pCell, marked_cell_set, alpha);
	  nb_solid_components++;  
	}
      }
    }
  return nb_solid_components;
}


template <class Dt,class EACT>
void Alpha_shape_3<Dt,EACT>::traverse(Cell_handle pCell,
				 Marked_cell_set& marked_cell_set,
				 const NT alpha) const
{
  typedef typename Marked_cell_set::Data Data;
  std::list<Cell_handle> cells;
  cells.push_back(pCell);
  Cell_handle pNeighbor;

  while(! cells.empty()){
    pCell = cells.back();
    cells.pop_back();
    for (int i=0; i<=3; i++)
      {
	pNeighbor = pCell->neighbor(i);
	CGAL_triangulation_assertion(pNeighbor != NULL);
	if (classify(pNeighbor, alpha) == INTERIOR){
	  Data& data = marked_cell_set[pNeighbor];
	  if(data == false){
	    data = true;
	    cells.push_back(pNeighbor);
	  }
	}
      }
  } 
}

//----------------------------------------------------------------------

template <class Dt,class EACT>
typename Alpha_shape_3<Dt,EACT>::Alpha_iterator 
Alpha_shape_3<Dt,EACT>::find_optimal_alpha(size_type nb_components) const
  // find the minimum alpha that satisfies the properties
  // (1) nb_components solid components <= nb_components
  // (2) all data points on the boundary or in its interior
{
  NT alpha = find_alpha_solid();
  // from this alpha on the alpha_solid satisfies property (2)
  
  Alpha_iterator first = alpha_lower_bound(alpha);
  if (number_of_solid_components(alpha) == nb_components)
    {
      // if ((first+1) < alpha_end()) 
      // return (first+1); 
      // else 
	return first;
    }

  // do binary search on the alpha values
  // number_of_solid_components() is a monotone function 
  // if we start with find_alpha_solid
  
  Alpha_iterator last = alpha_end();
  Alpha_iterator middle;
  
  std::ptrdiff_t len = last - first - 1;
  std::ptrdiff_t half;

  while (len > 0)
    {
      half = len / 2;
      middle = first + half;

 /*      //#ifdef DEBUG */
/*       std::cerr << "first : " << *first  */
/* 		<< " last : "  */
/* 		<< ((first+len != last) ? *(first+len) : *(last-1)) */
/* 		<< " mid : " << *middle  */
/* 		<< " nb comps : " << number_of_solid_components(*middle)  */
/* 		<< std::endl; */
/*       //#endif // DEBUG */

      if (number_of_solid_components(*middle) > nb_components)
	{
	  first = middle + 1;
	  len = len - half -1; 
	} 
      else // number_of_solid_components(*middle) <= nb_components
	{
	  len = half;
	}
    }

 /*  std::cerr << "a la fin " << std::endl */
/* 	    << "first : " << *first  */
/* 	    << " nb comps : " << number_of_solid_components(*first) */
/* 	    << std::endl; */
/*   if ((first+1) < alpha_end())  */
/*     std::cerr << "first+1 " << *(first+1)  */
/* 	      << " nb comps : " << number_of_solid_components(*(first+1)) */
/* 	      << std::endl; */
/*   std::cerr << std::endl; */

  if (number_of_solid_components(*first) <= nb_components ) return first;
  else return first+1;
}  	

//----------------------------------------------------------------------

template <class Dt,class EACT>
typename Alpha_shape_3<Dt,EACT>::NT 
Alpha_shape_3<Dt,EACT>::find_alpha_solid() const
  // compute the minumum alpha such that all data points 
  // are either on the boundary or in the interior
  // not necessarily connected
{
  return _alpha_solid;
}

// TO  DEBUG

template <class Dt,class EACT>
void 
Alpha_shape_3<Dt,EACT>::print_maps() const
{
  typename Alpha_cell_map::const_iterator cit ;
  typename Alpha_facet_map::const_iterator fit ;
  typename Alpha_edge_map::const_iterator eit ;
  typename Alpha_vertex_map::const_iterator vit;

  std::cerr << "size of cell map " << alpha_cell_map.size() 
	    <<   std::endl;
  std::cerr << "size of facet map " << alpha_min_facet_map.size() <<
    std::endl;
  std::cerr << "size of edge map " << alpha_min_edge_map.size() <<
    std::endl;
  std::cerr << "size of vertex map " << alpha_min_vertex_map.size() <<
    std::endl;
  std::cerr << std::endl;
  std::cerr << "alpha_cell_map " << std::endl;
  for(cit = alpha_cell_map.begin();
      cit != alpha_cell_map.end(); ++cit) {
    std::cerr << cit->first << std::endl;
  }
  std::cerr << std::endl;
  std::cerr << "alpha_min_facet_map " << std::endl;
  for(fit = alpha_min_facet_map.begin();
      fit != alpha_min_facet_map.end(); ++fit) {
    std::cerr << fit->first << std::endl;
  }
  std::cerr << std::endl;
  std::cerr << "alpha_min_edge_map " << std::endl;
  for(eit = alpha_min_edge_map.begin();
      eit != alpha_min_edge_map.end(); ++eit) {
    std::cerr << eit->first << std::endl;
  }
  std::cerr << std::endl;
  std::cerr << "alpha_min_vertex_map " << std::endl;
  for(vit = alpha_min_vertex_map.begin();
      vit != alpha_min_vertex_map.end(); ++vit) {
    std::cerr << vit->first << std::endl;
  }
  std::cerr << std::endl;
}


template <class Dt,class EACT>
void 
Alpha_shape_3<Dt,EACT>::print_alphas() const
{
  std::cerr << std::endl;
  std::cerr << " alpha values of facets" << std::endl;
  for(Finite_facets_iterator fit = finite_facets_begin();
      fit != finite_facets_end();
      ++fit) {
    Alpha_status_iterator as = fit->first->get_facet_status(fit->second);
    print_alpha_status(*as);
  }
  std::cerr << std::endl;
  std::cerr << " alpha values of edges " << std::endl;
  if (get_mode() == GENERAL) {
    for(Finite_edges_iterator eit = finite_edges_begin();
	eit != finite_edges_end();
	++eit) {
      Vertex_handle_pair 
	vhp = make_vertex_handle_pair(eit->first->vertex(eit->second),
				      eit->first->vertex(eit->third));
      Alpha_status_iterator as = edge_alpha_map.find(vhp)->second;
      print_alpha_status(*as);
    }
  }
  std::cerr << std::endl;
  std::cerr << " alpha values of vertices " << std::endl;
  for(Finite_vertices_iterator vit = finite_vertices_begin();
      vit != finite_vertices_end();
      ++vit) {
     Alpha_status*  as = vit->get_alpha_status();
     print_alpha_status(*as);
  }

}

template <class Dt,class EACT>
void 
Alpha_shape_3<Dt,EACT>::print_alpha_status(const Alpha_status& as) const
{
  if ( get_mode() == GENERAL &&  as.is_Gabriel())
  std::cerr << as.alpha_min() ;
  else std::cerr <<  "---   " ;
  std::cerr << "\t";
  std::cerr <<  as.alpha_mid()  << "\t";
  if(as.is_on_chull()) std::cerr <<  "---   ";
  else   std::cerr << as.alpha_max();
  std::cerr << std::endl;
}

} //namespace CGAL

#ifdef CGAL_USE_GEOMVIEW
#include <CGAL/IO/alpha_shape_geomview_ostream_3.h>
#endif

#endif //CGAL_ALPHA_SHAPE_3_H