1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
|
// Copyright (c) 2003-2008 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Circular_kernel_2/include/CGAL/Circular_kernel_2/internal_functions_on_circular_arc_2.h $
// $Id: internal_functions_on_circular_arc_2.h 67117 2012-01-13 18:14:48Z lrineau $
//
// Author(s) : Monique Teillaud, Sylvain Pion, Pedro Machado
// Partially supported by the IST Programme of the EU as a Shared-cost
// RTD (FET Open) Project under Contract No IST-2000-26473
// (ECG - Effective Computational Geometry for Curves and Surfaces)
// and a STREP (FET Open) Project under Contract No IST-006413
// (ACS -- Algorithms for Complex Shapes)
#ifndef CGAL_CIRCULAR_KERNEL_PREDICATES_ON_CIRCULAR_ARC_2_H
#define CGAL_CIRCULAR_KERNEL_PREDICATES_ON_CIRCULAR_ARC_2_H
#include <CGAL/Circular_kernel_2/internal_functions_on_circle_2.h>
#include <CGAL/Interval_nt.h>
#include <CGAL/Circular_kernel_2/Circular_arc_2.h>
namespace CGAL {
namespace CircularFunctors {
template < class CK >
inline
Comparison_result
compare_x(const typename CK::Circular_arc_point_2 &p0,
const typename CK::Circular_arc_point_2 &p1)
{
typedef typename CK::Algebraic_kernel AK;
if(p0.equal_ref(p1)) return static_cast<Comparison_result>(0);
return AK().compare_x_object()(p0.coordinates(), p1.coordinates());
}
template < class CK >
inline
Comparison_result
compare_y(const typename CK::Circular_arc_point_2 &p0,
const typename CK::Circular_arc_point_2 &p1)
{
typedef typename CK::Algebraic_kernel AK;
if(p0.equal_ref(p1)) return static_cast<Comparison_result>(0);
return AK().compare_y_object()(p0.coordinates(), p1.coordinates());
}
template < class CK >
Comparison_result
compare_xy(const typename CK::Circular_arc_point_2 &p0,
const typename CK::Circular_arc_point_2 &p1)
{
if(p0.equal_ref(p1)){
return EQUAL;
}
typedef typename CK::Algebraic_kernel AK;
return AK().compare_xy_object()(p0.coordinates(), p1.coordinates());
}
// PRE CONDITION:
// The coordinates of P, Q, R have to have the same
// delta or (beta == 0 || delta == 0)
// We cannot code this pre condition because
// if Root_of_2 is interval_nt "beta", "delta" mean nothing
template < class CK >
Orientation
orientation(const typename CK::Circular_arc_point_2 &p,
const typename CK::Circular_arc_point_2 &q,
const typename CK::Circular_arc_point_2 &r)
{
typedef typename CK::Root_of_2 Root_of_2;
const Root_of_2 px = p.x();
const Root_of_2 py = p.y();
const Root_of_2 qx = q.x();
const Root_of_2 qy = q.y();
const Root_of_2 rx = r.x();
const Root_of_2 ry = r.y();
const Root_of_2 a00 = qx-px;
const Root_of_2 a01 = qy-py;
const Root_of_2 a10 = rx-px;
const Root_of_2 a11 = ry-py;
return CGAL_NTS compare(a00*a11, a10*a01);
}
// template < class CK >
// inline
// Comparison_result
// compare_x(const typename CK::Circular_arc_point_2 &p0,
// const typename CK::Point_2 &p1)
// {
// return CGAL::compare(p0.x(), p1.x());
// }
// template < class CK >
// inline
// Comparison_result
// compare_x(const typename CK::Point_2 &p0,
// const typename CK::Circular_arc_point_2 &p1)
// {
// return CGAL::compare(p0.x(), p1.x());
// }
// template < class CK >
// inline
// Comparison_result
// compare_y(const typename CK::Circular_arc_point_2 &p0,
// const typename CK::Point_2 &p1)
// {
// return CGAL::compare(p0.y(), p1.y());
// }
// template < class CK >
// inline
// Comparison_result
// compare_y(const typename CK::Point_2 &p0,
// const typename CK::Circular_arc_point_2 &p1)
// {
// return CGAL::compare(p0.y(), p1.y());
// }
// template < class CK >
// Comparison_result
// compare_xy(const typename CK::Circular_arc_point_2 &p0,
// const typename CK::Point_2 &p1)
// {
// Comparison_result compx = compare_x<CK>(p0, p1);
// if (compx != 0)
// return compx;
// return compare_y<CK>(p0, p1);
// }
// template < class CK >
// Comparison_result
// compare_xy(const typename CK::Point_2 &p0,
// const typename CK::Circular_arc_point_2 &p1)
// {
// Comparison_result compx = compare_x<CK>(p0, p1);
// if (compx != 0)
// return compx;
// return compare_y<CK>(p0, p1);
// }
template < class CK >
bool
point_in_x_range(const typename CK::Circular_arc_point_2 &source,
const typename CK::Circular_arc_point_2 &target,
const typename CK::Circular_arc_point_2 &p)
{
// range includes endpoints here
return ( (CircularFunctors::compare_x<CK>(p, source) != CircularFunctors::compare_x<CK>(p, target))
|| (CircularFunctors::compare_x<CK>(p, source) == CGAL::EQUAL) );
}
template < class CK >
bool
point_in_x_range(const typename CK::Circular_arc_2 &A,
const typename CK::Circular_arc_point_2 &p)
{
//CGAL_kernel_precondition (A.is_x_monotone());
// range includes endpoints here
return CircularFunctors::compare_x<CK>( p, A.source()) != CircularFunctors::compare_x<CK>(p, A.target() );
}
template < class CK >
Comparison_result
compare_y_at_x(const typename CK::Circular_arc_point_2 &p,
const typename CK::Circular_arc_2 &A1)
{
//CGAL_kernel_precondition (A1.is_x_monotone());
//CGAL_kernel_precondition (CircularFunctors::point_in_x_range<CK>(A1, p));
if((p.equal_ref(A1.source())) || (p.equal_ref(A1.target()))){
return EQUAL;
}
// Compare the ordinate of p with the ordinate of the center.
Comparison_result sgn =
CGAL::compare(p.y(), A1.supporting_circle().center().y());
// Is the arc on the lower or upper part of the circle ?
// I.e. it's the comparison of the "ordinate" of the arc with the center.
Comparison_result cmp = A1.on_upper_part() ? LARGER : SMALLER;
if (sgn == opposite(cmp))
return sgn;
// If not, then we can compute if p is inside the circle or not.
typedef typename CK::Root_of_2 Root;
Root dx_sqr = CGAL::square(p.x() - A1.supporting_circle().center().x());
Root dy_sqr = CGAL::square(p.y() - A1.supporting_circle().center().y());
// NB : that one can be factorized with the above...
// Now we want the comparison of dx_sqr + dy_sqr with squared_radius.
// It's the same as dx_sqr - squared_radius with -dy_sqr.
Comparison_result distance_to_center =
CGAL::compare(dx_sqr, A1.supporting_circle().squared_radius() - dy_sqr);
if (cmp > 0)
return distance_to_center;
else
return opposite(distance_to_center);
}
template < class CK >
Comparison_result
compare_y_to_right(const typename CK::Circular_arc_2 &A1,
const typename CK::Circular_arc_2 &A2,
const typename CK::Circular_arc_point_2 &p)
{
// FIXME : add preconditions to check that the 2 arcs are defined at
// the right of the intersection.
//CGAL_kernel_precondition (A1.is_x_monotone());
//CGAL_kernel_precondition (A2.is_x_monotone());
typedef std::vector<CGAL::Object> solutions_container;
typedef typename CK::Circular_arc_2 Circular_arc_2;
#ifdef CGAL_INTERSECTION_MAP_FOR_XMONOTONIC_ARC_WITH_SAME_SUPPORTING_CIRCLE
// intersection found on the map
solutions_container early_sols;
if(Circular_arc_2::template find_intersection< solutions_container >
(A1,A2,early_sols)) {
if(A1.on_upper_part()) return LARGER;
return SMALLER;
}
#endif
const typename CK::Circle_2 & C1 = A1.supporting_circle();
const typename CK::Circle_2 & C2 = A2.supporting_circle();
if (CircularFunctors::non_oriented_equal<CK>(C1,C2)) {
// The point is either a left vertical tangent point of both,
// or a normal point (-> EQUAL).
bool b1 = A1.on_upper_part();
bool b2 = A2.on_upper_part();
if (b1 == b2)
return EQUAL;
if (b1 == true && b2 == false)
return LARGER;
CGAL_kernel_assertion (b1 == false && b2 == true);
return SMALLER;
}
const typename CK::Root_of_2 b1_y = C1.center().y() - p.y();
const typename CK::Root_of_2 b2_y = C2.center().y() - p.y();
int s_b1_y = CGAL::sign(b1_y);
int s_b2_y = CGAL::sign(b2_y);
if (s_b1_y == 0) {
// Vertical tangent for A1.
if (s_b2_y != 0)
return A1.on_upper_part() ? LARGER : SMALLER;
// Vertical tangent for A2 also.
bool b1 = A1.on_upper_part();
bool b2 = A2.on_upper_part();
if (b1 == b2)
return b1 ? compare_x(C1.center(), C2.center())
: compare_x(C2.center(), C1.center());
if (b1 == true && b2 == false)
return LARGER;
CGAL_kernel_assertion (b1 == false && b2 == true);
return SMALLER;
}
if (s_b2_y == 0) {
// Vertical tangent for A2.
return A2.on_upper_part() ? SMALLER : LARGER;
}
// No more vertical tangent points.
CGAL_kernel_assertion(s_b1_y != 0);
CGAL_kernel_assertion(s_b2_y != 0);
int s_b1_x = (int) CGAL::compare(p.x(), C1.center().x());
int s_b2_x = (int) CGAL::compare(p.x(), C2.center().x());
// We compute the slope of the 2 tangents, then we compare them.
Comparison_result cmp = CGAL::compare(s_b1_y * s_b1_x,
s_b2_y * s_b2_x);
// The slopes have different signs.
if (cmp != 0)
return cmp;
// The slopes have the same signs : we have to square.
if (CGAL::square(squared_distance(C1.center(), C2.center())
- C1.squared_radius() - C2.squared_radius())
< 4 * C1.squared_radius() * C2.squared_radius() )
{
// The two circles are not tangent.
return static_cast<Comparison_result>
(CGAL::compare(C1.squared_radius() * CGAL::square(b2_y),
C2.squared_radius() * CGAL::square(b1_y))
* s_b1_y * s_b1_x );
}
// tangent circles
if (s_b1_x * s_b2_x < 0)
// Circles are on both sides, and the tangent is not horizontal
return compare_y(C1.center(), C2.center());
if (s_b1_x * s_b2_x > 0)
// Circles are on the same side, and the tgt is not horizontal.
return compare_y(C2.center(), C1.center());
// The tangent is horizontal.
CGAL_kernel_assertion(s_b1_x == 0 && s_b2_x == 0);
if (s_b1_y == s_b2_y)
// The 2 circles are both below or both above the tangent
return compare_y(C2.center(), C1.center());
return compare_y(C1.center(), C2.center());
}
template < class CK >
inline
bool
equal(const typename CK::Circular_arc_point_2 &p0,
const typename CK::Circular_arc_point_2 &p1)
{
if(p0.equal_ref(p1)) return static_cast<Comparison_result>(1);
return CircularFunctors::compare_xy<CK>(p0, p1) == 0;
}
template < class CK >
bool
equal(const typename CK::Circular_arc_2 &A1,
const typename CK::Circular_arc_2 &A2)
{
/*if ((A1.supporting_circle() != A2.supporting_circle()) &&
(A1.supporting_circle() != A2.supporting_circle().opposite()))
return false;*/
if(!CircularFunctors::non_oriented_equal<CK>(
A1.supporting_circle(), A2.supporting_circle()))
return false;
return (CircularFunctors::equal<CK>(A1.source(), A2.source()) &&
CircularFunctors::equal<CK>(A1.target(), A2.target()));
}
// template < class CK >
// bool
// equal(const typename CK::Circular_arc_2 &A1,
// const typename CK::Circular_arc_2 &A2)
// {
// CGAL_kernel_precondition (A1.is_x_monotone());
// CGAL_kernel_precondition (A2.is_x_monotone());
// if ( A1.supporting_circle() != A2.supporting_circle() )
// return false;
// return equal<CK>( A1.source(), A2.source() )
// && equal<CK>( A1.target(), A2.target() );
// }
// Small accessory function
// Tests whether a given point is on an arc, with the precondition that
// it's (symbolically) on the supporting circle.
/*template < class CK >
bool
has_on(const typename CK::Circular_arc_2 &a,
const typename CK::Circular_arc_point_2 &p,
const bool has_on_supporting_circle = false)
{
CGAL_kernel_precondition(a.is_x_monotone());
// typedef typename CK::Polynomial_for_circles_2_2 Polynomial_for_circles_2_2;
// Polynomial_for_circles_2_2
// equation = get_equation<CK>(a.supporting_circle());
// if(CGAL::sign_at<typename CK::Algebraic_kernel>
// (equation,p.coordinates())!= ZERO)
// return false;
if(!has_on_supporting_circle) {
if ( ! CircularFunctors::has_on<CK>(a.supporting_circle(),p) )
return false;
}
if (! CircularFunctors::point_in_x_range<CK>(a, p) )
return false;
int cmp = CGAL::compare(p.y(), a.supporting_circle().center().y());
return cmp == 0 || (cmp > 0 && a.on_upper_part())
|| (cmp < 0 && !a.on_upper_part());
}*/
template < class CK >
bool
has_on(const typename CK::Circular_arc_2 &a,
const typename CK::Circular_arc_point_2 &p,
const bool has_on_supporting_circle = false)
{
if( (p.equal_ref(a.source())) || (p.equal_ref(a.source()))) {
return true;
}
if(!has_on_supporting_circle) {
if ( ! CircularFunctors::has_on<CK>(a.supporting_circle(),p) )
return false;
}
if(a.is_full()) return true;
if(a.is_x_monotone()) {
int cmp_ps = CircularFunctors::compare_x<CK>(p,a.source());
int cmp_pt = CircularFunctors::compare_x<CK>(p,a.target());
if(cmp_ps == cmp_pt) return false;
int cmp = CGAL::compare(p.y(), a.supporting_circle().center().y());
return cmp == 0 || (cmp > 0 && a.on_upper_part())
|| (cmp < 0 && !a.on_upper_part());
} else if(a.is_complementary_x_monotone()) {
int cmp_ps = CircularFunctors::compare_x<CK>(p,a.source());
int cmp_pt = CircularFunctors::compare_x<CK>(p,a.target());
if(cmp_ps == cmp_pt) return true;
if((!cmp_ps) || (!cmp_pt)) return true;
int cmp = CGAL::compare(p.y(), a.supporting_circle().center().y());
return cmp == 0 || (cmp < 0 && a.complementary_on_upper_part())
|| (cmp > 0 && !a.complementary_on_upper_part());
} else if(a.is_y_monotone()) {
int cmp_ps = CircularFunctors::compare_y<CK>(p,a.source());
int cmp_pt = CircularFunctors::compare_y<CK>(p,a.target());
if(cmp_ps == cmp_pt) return false;
int cmp = CGAL::compare(p.x(), a.supporting_circle().center().x());
return cmp == 0 || (cmp < 0 && a.on_left_part())
|| (cmp > 0 && !a.on_left_part());
} else if(a.is_complementary_y_monotone()) {
int cmp_ps = CircularFunctors::compare_y<CK>(p,a.source());
int cmp_pt = CircularFunctors::compare_y<CK>(p,a.target());
if(cmp_ps == cmp_pt) return true;
if((!cmp_ps) || (!cmp_pt)) return true;
int cmp = CGAL::compare(p.x(), a.supporting_circle().center().x());
return cmp == 0 || (cmp > 0 && a.complementary_on_left_part())
|| (cmp < 0 && !a.complementary_on_left_part());
} else {
int cmp_scy = CGAL::compare(a.source().y(), a.supporting_circle().center().y());
int cmp = CGAL::compare(p.y(), a.supporting_circle().center().y());
if(cmp_scy < 0) {
if(cmp > 0) return CGAL::compare(p.x(), a.target().x()) >= 0;
else return CGAL::compare(p.x(), a.source().x()) >= 0;
} else {
if(cmp > 0) return CGAL::compare(p.x(), a.source().x()) <= 0;
else return CGAL::compare(p.x(), a.target().x()) <= 0;
}
}
}
template < class CK >
bool
do_overlap(const typename CK::Circular_arc_2 &A1,
const typename CK::Circular_arc_2 &A2)
{
//CGAL_kernel_precondition (A1.is_x_monotone());
//CGAL_kernel_precondition (A2.is_x_monotone());
/*if ( (A1.supporting_circle() != A2.supporting_circle()) &&
(A1.supporting_circle() != A2.supporting_circle().opposite()) )
return false;*/
if(!CircularFunctors::non_oriented_equal<CK>(
A1.supporting_circle(), A2.supporting_circle()))
return false;
//if ( A1.on_upper_part() != A2.on_upper_part() ) return false;
//return CircularFunctors::compare_x<CK>(A1.right(), A2.left()) > 0
// && CircularFunctors::compare_x<CK>(A1.left(), A2.right()) < 0;
if(A1.is_full()) return true;
if(A2.is_full()) return true;
if((has_on<CK>(A1,A2.target(),true)) ||
(has_on<CK>(A1,A2.source(),true))) return true;
return has_on<CK>(A2,A1.source(),true);
}
template < class CK >
void
split(const typename CK::Circular_arc_2 &A,
const typename CK::Circular_arc_point_2 &p,
typename CK::Circular_arc_2 &ca1,
typename CK::Circular_arc_2 &ca2)
{
CGAL_kernel_precondition( CircularFunctors::has_on<CK>(A, p));
typedef typename CK::Circular_arc_2 Circular_arc_2;
const Circular_arc_2 &rc1 =
Circular_arc_2( A.supporting_circle(), A.source(), p);
const Circular_arc_2 &rc2 =
Circular_arc_2( A.supporting_circle(), p, A.target());
if ( CircularFunctors::compare_x<CK>(rc1.source(), rc2.source()) != SMALLER) {
ca1 = rc2;
ca2 = rc1;
} else {
ca1 = rc1;
ca2 = rc2;
}
#ifdef CGAL_INTERSECTION_MAP_FOR_XMONOTONIC_ARC_WITH_SAME_SUPPORTING_CIRCLE
std::vector < CGAL::Object > res;
if(A.is_full()) {
res.push_back(make_object(std::make_pair(ca1.source(),1u)));
res.push_back(make_object(std::make_pair(ca2.source(),1u)));
} else {
res.push_back(make_object(std::make_pair(p,1u)));
}
Circular_arc_2::template put_intersection< std::vector < CGAL::Object > >
(ca1,ca2,res);
#endif
/*ca1 = Circular_arc_2( A.supporting_circle(), A.source(), p);
ca2 = Circular_arc_2( A.supporting_circle(), p, A.target());
//if ( ca1.right()!=ca2.left() )
if ( CircularFunctors::compare_x<CK>(ca1.left(), ca2.left()) != SMALLER )
{
//std::cout << " SWAP " << std::endl;
std::swap(ca1,ca2);
}*/
}
template< class CK, class OutputIterator>
OutputIterator
intersect_2( const typename CK::Circular_arc_2 &a1,
const typename CK::Circular_arc_2 &a2,
OutputIterator res )
{
typedef std::vector<CGAL::Object> solutions_container;
typedef typename CK::Circular_arc_2 Circular_arc_2;
typedef typename CK::Circular_arc_point_2 Circular_arc_point_2;
#ifdef CGAL_INTERSECTION_MAP_FOR_XMONOTONIC_ARC_WITH_SAME_SUPPORTING_CIRCLE
// same curve
if(a1.number() == a2.number()) {
*res++ = make_object(a1);
return res;
}
// intersection found on the map
solutions_container early_sols;
if(Circular_arc_2::template find_intersection< solutions_container >
(a1,a2,early_sols)) {
for (typename solutions_container::iterator it = early_sols.begin();
it != early_sols.end(); ++it) {
*res++ = *it;
}
return res;
}
#endif
#ifdef CGAL_CK_EXPLOIT_IDENTITY
bool a1s_a2s = a1.source().equal_ref(a2.source());
bool a1s_a2t = a1.source().equal_ref(a2.target());
bool a1t_a2s = a1.target().equal_ref(a2.source());
bool a1t_a2t = a1.target().equal_ref(a2.target());
if((a1s_a2s && a1t_a2t) || (a1s_a2t && a1t_a2s)){ // Case 1
if( (a1.supporting_circle() == a2.supporting_circle()) && ((a1.on_upper_part() && a2.on_upper_part())|| (! a1.on_upper_part() && (! a2.on_upper_part())))){
*res++ = make_object(a1);
} else {
if(compare_x<CK>(a1.source(), a1.target()) == SMALLER){
*res++ = make_object(std::make_pair(a1.source(),1u));
*res++ = make_object(std::make_pair(a1.target(),1u));
} else {
*res++ = make_object(std::make_pair(a1.target(),1u));
*res++ = make_object(std::make_pair(a1.source(),1u));
}
}
return res;
} else if (a1s_a2s || a1t_a2t || a1s_a2t || a1t_a2s) {
Circular_arc_point_2 p,q,r;
// Make that q is the middle vertex
if(a1s_a2s){
p = a1.target();
q = a1.source();
r = a2.target();
} else if(a1s_a2t){
p = a1.target();
q = a1.source();
r = a2.source();
} else if(a1t_a2s){
p = a1.source();
q = a1.target();
r = a2.target();
} else { // a1t_a2t
p = a1.source();
q = a1.target();
r = a2.source();
}
bool return_q = false;
if(CircularFunctors::compare_x<CK>(r,q) == LARGER){
if (CircularFunctors::point_in_x_range<CK>(p,r,q)){ // Case 2
return_q = true;
} else if (((a1.on_upper_part() && ! a2.on_upper_part()) && CircularFunctors::compare_y_to_right<CK>(a1,a2,q) == SMALLER)
|| ((! a1.on_upper_part() && a2.on_upper_part()) && CircularFunctors::compare_y_to_right<CK>(a1,a2,q) == LARGER)){
return_q = true;
} else if ((a1.on_upper_part() && ! a2.on_upper_part()) && CircularFunctors::compare_y_to_right<CK>(a1,a2,q)==LARGER){
typename CK::Linear_kernel::Bounded_side p_a2_bs = CircularFunctors::bounded_side<CK>(a2.supporting_circle(),p);
typename CK::Linear_kernel::Bounded_side r_a1_bs = CircularFunctors::bounded_side<CK>(a1.supporting_circle(),r);
if(p_a2_bs || r_a1_bs){
return_q = true;
} else {
}
}
} else {
// TODO: treat the cases where the common endpoint is on the right
}
if(return_q){
*res++ = make_object(std::make_pair(q,1u));
return res;
}
}
#endif // CGAL_CK_EXPLOIT_IDENTITY
const bool sqr1_eq_sqr2 = (a1.squared_radius() == a2.squared_radius());
const bool c1_eq_c2 = (a1.center() == a2.center());
if(sqr1_eq_sqr2 && c1_eq_c2) {
if(a1.is_full()) {
*res++ = make_object(a2);
//return res;
}
else if(a2.is_full()) {
*res++ = make_object(a1);
//return res;
} else {
bool t2_in_a1 = has_on<CK>(a1,a2.target(),true);
bool s2_in_a1 = has_on<CK>(a1,a2.source(),true);
if(t2_in_a1 && s2_in_a1) {
bool t1_in_a2 = has_on<CK>(a2,a1.target(),true);
bool s1_in_a2 = has_on<CK>(a2,a1.source(),true);
if(t1_in_a2 && s1_in_a2) {
const Comparison_result comp =
CircularFunctors::compare_xy<CK>(a1.source(), a2.source());
if(comp < 0) {
if(a1.source() == a2.target()) {
*res++ = make_object(std::make_pair(a1.source(),1u));
} else {
const Circular_arc_2 & arc =
Circular_arc_2(a1.supporting_circle(),a1.source(),a2.target());
*res++ = make_object(arc);
}
if(a2.source() == a1.target()) {
*res++ = make_object(std::make_pair(a2.source(),1u));
} else {
const Circular_arc_2 & arc =
Circular_arc_2(a1.supporting_circle(),a2.source(),a1.target());
*res++ = make_object(arc);
}
} else if (comp > 0) {
if(a2.source() == a1.target()) {
*res++ = make_object(std::make_pair(a2.source(),1u));
} else {
const Circular_arc_2 & arc =
Circular_arc_2(a1.supporting_circle(),a2.source(),a1.target());
*res++ = make_object(arc);
}
if(a1.source() == a2.target()) {
*res++ = make_object(std::make_pair(a1.source(),1u));
} else {
const Circular_arc_2 & arc =
Circular_arc_2(a1.supporting_circle(),a1.source(),a2.target());
*res++ = make_object(arc);
}
} else {
*res++ = make_object(a1);
}
} else {
*res++ = make_object(a2);
//return res;
}
}
else if(t2_in_a1) {
if(a1.source() == a2.target())
*res++ = make_object(std::make_pair(a1.source(),1u));
else {
const Circular_arc_2 & arc =
Circular_arc_2(a1.supporting_circle(),a1.source(),a2.target());
*res++ = make_object(arc);
} //return res;
} else if(s2_in_a1) {
if(a2.source() == a1.target()) {
*res++ = make_object(std::make_pair(a2.source(),1u));
} else {
const Circular_arc_2 & arc =
Circular_arc_2(a1.supporting_circle(),a2.source(),a1.target());
*res++ = make_object(arc);
} //return res;
} else if(has_on<CK>(a2,a1.source(),true)) {
*res++ = make_object(a1);
//return res;
}
//return res;
}
} else if(!c1_eq_c2) {
solutions_container solutions;
#ifdef CGAL_INTERSECTION_MAP_FOR_SUPPORTING_CIRCLES
if(!Circular_arc_2::template
find_intersection_circle_circle< solutions_container >
(a1,a2,solutions)) {
#endif
intersection( a1.supporting_circle(), a2.supporting_circle(),
std::back_inserter(solutions) );
#ifdef CGAL_INTERSECTION_MAP_FOR_SUPPORTING_CIRCLES
Circular_arc_2::template
put_intersection_circle_circle< std::vector < CGAL::Object > >
(a1,a2,solutions);
}
#endif
if(solutions.size() == 0) return res;
else {
// The supporting circles are not the same and intersects
for (typename solutions_container::iterator it = solutions.begin();
it != solutions.end(); ++it) {
const std::pair<typename CK::Circular_arc_point_2, unsigned>
*result = CGAL::object_cast
<std::pair<typename CK::Circular_arc_point_2, unsigned> > (&(*it));
#ifdef CGAL_CK_TEST_BBOX_BEFORE_HAS_ON
Bbox_2 rb = result->first.bbox();
if(do_overlap(a1.bbox(), rb) && do_overlap(a2.bbox(),rb)){
if (has_on<CK>(a1,result->first,true) &&
has_on<CK>(a2,result->first,true)) {
*res++ = *it;
}
}
#else
if (has_on<CK>(a1,result->first,true) &&
has_on<CK>(a2,result->first,true)) {
*res++ = *it;
}
#endif
}
//return res;
}
}
return res;
}
// !!!! a lot of useless assertions for debug
/*template< class CK, class OutputIterator>
OutputIterator
intersect_2( const typename CK::Circular_arc_2 &a1,
const typename CK::Circular_arc_2 &a2,
OutputIterator res )
{
typedef typename CK::Circular_arc_point_2 Circular_arc_point_2;
typedef typename CK::Circular_arc_2 Circular_arc_2;
if (a1.is_x_monotone() && a2.is_x_monotone()) {
// Overlapping curves.
if ( (a1.supporting_circle() == a2.supporting_circle()) ||
(a1.supporting_circle() == a2.supporting_circle().opposite()) ) {
// The ranges need to overlap in order for the curves to overlap.
if ( CircularFunctors::compare_x<CK>(a1.left(), a2.right()) > 0 ||
CircularFunctors::compare_x<CK>(a2.left(), a1.right()) > 0)
return res;
// They both need to be on the same upper/lower part.
if (a1.on_upper_part() != a2.on_upper_part()) {
// But they could share the left vertical tangent point.
if (a1.left() == a2.left())
*res++ = make_object(std::make_pair(a1.left(),1u));
// Or they could share the right vertical tangent point.
if (a1.right() == a2.right())
*res++ = make_object(std::make_pair(a1.right(),1u));
return res;
}
// We know they overlap, determine the extremities of
// the common subcurve
// TODO : We should use std::max and std::min, but they
// require less_x_2.
const Circular_arc_2 & arctmp =
CircularFunctors::compare_x<CK>(a1.right(), a2.right()) < 0 ? a1 : a2;
// we know that the right endpoint is correct, let us look for
// the left now:
//? a1.left() : a2.left();
if (CircularFunctors::compare_x<CK>(a1.left(), a2.left()) > 0) {
//the left endpoint is a1's
if (CircularFunctors::compare_x<CK>(a1.left(), a2.right()) < 0){
if (a1.on_upper_part()) {
const Circular_arc_2 & arc =
Circular_arc_2(a1.supporting_circle(),a2.right(),a1.left());
CGAL_kernel_assertion(arc.is_x_monotone());
*res++ = make_object(arc);
}
else {
const Circular_arc_2 & arc =
Circular_arc_2(a1.supporting_circle(),a1.left(), a2.right());
CGAL_kernel_assertion(arc.is_x_monotone());
*res++ = make_object(arc);
}
}
else
*res++ = make_object(std::make_pair(arctmp.right(),1u));
}
else if( CircularFunctors::compare_x<CK>(a1.left(), a2.left()) < 0 ) {
//the left endpoint is a2's
if(CircularFunctors::compare_x<CK>(a1.right(), a2.left()) > 0) {
if(a1.on_upper_part()){
const Circular_arc_2 & arc =
Circular_arc_2(a1.supporting_circle(), a1.right(), a2.left());
CGAL_kernel_assertion(arc.is_x_monotone());
*res++ = make_object(arc);
}
else {
const Circular_arc_2 & arc =
Circular_arc_2(a1.supporting_circle(), a2.left(), a1.right());
CGAL_kernel_assertion(arc.is_x_monotone());
*res++ = make_object(arc);
}
}
else
*res++ = make_object(std::make_pair(arctmp.right(),1u));
}
else {
if(CircularFunctors::compare_x<CK>(a1.right(), a2.right()) >= 0)
*res++ = make_object(a2);
else if(CircularFunctors::compare_x<CK>(a1.right(), a2.right()) < 0)
*res++ = make_object(a1);
else
*res++ = make_object(std::make_pair(arctmp.right(),1u));
}
return res;
}
// // We need to check that the supporting circles
// // do intersect before going further.
// if (! do_intersect(a1.supporting_circle(), a2.supporting_circle()))
// { return res; }
//
// // Get the two intersection points of the supporting circles.
//
// std::vector<CGAL::Object > intersection_points;
// CGAL::intersect_2<CK>
// ( a1.supporting_circle(), a2.supporting_circle(),
// std::back_inserter(intersection_points) );
std::vector<CGAL::Object > intersection_points;
CGAL::intersect_2<CK> ( a1.supporting_circle(), a2.supporting_circle(),
std::back_inserter(intersection_points) );
if(intersection_points.size() == 0) return res;
const Circular_arc_point_2 &left =
(CGAL::object_cast< std::pair<Circular_arc_point_2, unsigned> >
(&(intersection_points[0])))->first;
if (intersection_points.size() < 2){// multiplicity 2
if (CircularFunctors::has_on<CK>(a1, left) && CircularFunctors::has_on<CK>(a2, left))
*res++ = make_object(std::make_pair(left,2u));
}
else {// multiplicity 1
const Circular_arc_point_2 &right =
(CGAL::object_cast< std::pair<Circular_arc_point_2, unsigned> >
(&(intersection_points[1])))->first;
// We also need to check that these intersection points are on the arc.
if (CircularFunctors::has_on<CK>(a1, left) && CircularFunctors::has_on<CK>(a2, left))
*res++ = make_object(std::make_pair(left,1u));
if (CircularFunctors::has_on<CK>(a1, right) && CircularFunctors::has_on<CK>(a2, right))
*res++ = make_object(std::make_pair(right,1u));
}
return res;
}
else {//a1 or a2 are not x_monotone
std::vector< CGAL::Object > arcs_a1_x_monotone;
make_x_monotone( a1, std::back_inserter(arcs_a1_x_monotone));
std::vector< CGAL::Object > arcs_a2_x_monotone;
make_x_monotone( a2, std::back_inserter(arcs_a2_x_monotone));
std::vector< Circular_arc_2 > circle_arcs;
std::vector< Circular_arc_point_2 > circle_arc_endpoints;
for ( std::vector< CGAL::Object >::iterator it1 =
arcs_a1_x_monotone.begin();
it1 != arcs_a1_x_monotone.end(); ++it1 ) {
//CGAL_kernel_assertion(assign( a1_aux, *it1));
const Circular_arc_2 *a1_aux =
CGAL::object_cast< Circular_arc_2 >(&*it1);
for ( std::vector< CGAL::Object >::iterator it2 =
arcs_a2_x_monotone.begin();
it2 != arcs_a2_x_monotone.end(); ++it2 ) {
//CGAL_kernel_assertion(assign( a2_aux, *it2));
//assign( a2_aux, *it2);
const Circular_arc_2 *a2_aux =
CGAL::object_cast<Circular_arc_2>(&*it2);
std::vector< CGAL::Object > res_aux;
CircularFunctors::intersect_2<CK>( *a1_aux, *a2_aux, std::back_inserter(res_aux));
if(res_aux.size() == 2){
//it can't be a circular_arc_2
//CGAL_kernel_assertion(assign(the_pair, res_aux[0]));
const std::pair<Circular_arc_point_2, unsigned int> *the_pair1 =
CGAL::object_cast<std::pair<Circular_arc_point_2, unsigned int> >
(&res_aux[0]);
Circular_arc_point_2 arc_end1 = the_pair1->first;
//assign(the_pair, res_aux[1]);
const std::pair<Circular_arc_point_2, unsigned int> *the_pair2 =
CGAL::object_cast<std::pair<Circular_arc_point_2, unsigned int> >
(&res_aux[1]);
Circular_arc_point_2 arc_end2 = the_pair2->first;
bool exist = false;
for (typename std::vector< Circular_arc_point_2 >::iterator it
= circle_arc_endpoints.begin();
it != circle_arc_endpoints.end(); ++it ) {
if (arc_end1 == *it) {
exist = true;
break;
}
}
if (!exist) {
circle_arc_endpoints.push_back(arc_end1);
}
else exist = false;
for ( typename std::vector< Circular_arc_point_2 >::iterator it
= circle_arc_endpoints.begin();
it != circle_arc_endpoints.end(); ++it ) {
if (arc_end2 == *it) {
exist = true;
break;
}
}
if (!exist)
circle_arc_endpoints.push_back(arc_end2);
}
else if( res_aux.size() == 1){
//it can be a Circular_arc_point_2 or a Circular_arc_2
if(const Circular_arc_2 *arc =
CGAL::object_cast<Circular_arc_2>(&res_aux[0])) {
//if(assign(arc,res_aux[0])){
circle_arcs.push_back(*arc);
}
else {
//CGAL_kernel_assertion(assign(the_pair, res_aux[0]));
//assign(the_pair, res_aux[0]);
const std::pair<Circular_arc_point_2, unsigned int> *the_pair =
CGAL::object_cast<std::pair<Circular_arc_point_2, unsigned int> >
(&res_aux[0]);
Circular_arc_point_2 arc_end = the_pair->first;
if (the_pair->second == 2u) {//there are only one tangent point
*res++ = res_aux[0];
return res;
}
bool exist = false;
for (typename std::vector< Circular_arc_point_2 >::iterator it
= circle_arc_endpoints.begin();
it != circle_arc_endpoints.end(); ++it ) {
if (arc_end == *it) {
exist = true;
break;
}
}
if (!exist)
circle_arc_endpoints.push_back(arc_end);
}
}
}
}
//there are not double
if (circle_arcs.size() > 0){
std::size_t i = 1;
while((i < circle_arcs.size()) &&
(circle_arcs[i-1].target().x() == circle_arcs[i].source().x()) &&
(circle_arcs[i-1].target().y() == circle_arcs[i].source().y())
)
{i++;}
*res++ = make_object
(Circular_arc_2(circle_arcs[0].supporting_circle(),
circle_arcs[0].source(),
circle_arcs[i-1].target()
));
if (i < circle_arcs.size()) {//there are 2 circle arcs
std::size_t j = i;
i++;
while((i < circle_arcs.size())
&& (circle_arcs[i-1].target() == circle_arcs[i].source()))
i++;
*res++ = make_object
(Circular_arc_2(circle_arcs[j].supporting_circle(),
circle_arcs[j].source(),
circle_arcs[i-1].target()
));
return res;
}
else {//There are one circle arc and there can be maximum one endpoint
for (typename std::vector< Circular_arc_point_2 >::iterator it1
= circle_arc_endpoints.begin();
it1 != circle_arc_endpoints.end(); ++it1 ) {
bool other_point = true;
for (typename std::vector< Circular_arc_2 >::iterator it2
= circle_arcs.begin();
it2 != circle_arcs.end(); ++it2 )
{
if (CircularFunctors::has_on<CK>(*it2, *it1)) {
other_point = false;
break;
}
}
if (other_point) {
*res++ = make_object(std::make_pair(*it1,1u));
break;
}
}
return res;
}
}
else{//there are one or two endpoint
if (circle_arc_endpoints.size() > 1){
*res++ = make_object(std::make_pair(circle_arc_endpoints[0],1u));
*res++ = make_object(std::make_pair(circle_arc_endpoints[1],1u));
}
else if (circle_arc_endpoints.size() == 1)
*res++ = make_object(std::make_pair(circle_arc_endpoints[0],1u));
return res;
}
}
}*/
template < class CK >
bool
is_vertical(const typename CK::Circular_arc_2 &)
{
return false;
}
template < class CK, class OutputIterator >
OutputIterator
make_x_monotone( const typename CK::Circular_arc_2 &A,
OutputIterator res )
{
typedef typename CK::Circular_arc_2 Circular_arc_2;
typedef typename CK::Circle_2 Circle_2;
typedef typename CK::FT FT;
typedef typename CK::Point_2 Point_2;
typedef typename CK::Circular_arc_point_2 Circular_arc_point_2;
typedef typename CK::Root_for_circles_2_2 Root_for_circles_2_2;
CGAL_kernel_precondition(A.supporting_circle().squared_radius() != 0);
if (A.is_x_monotone()) {
#ifdef CGAL_INTERSECTION_MAP_FOR_SUPPORTING_CIRCLES
// get a number for its supporting circle
A.circle_number();
#endif
*res++ = make_object(A);
return res;
}
std::vector< Root_for_circles_2_2 > vector_x_extremal_points;
CircularFunctors::x_extremal_points<CK>(A.supporting_circle(),
std::back_inserter(vector_x_extremal_points));
Circular_arc_point_2 x_extremal_point1 = vector_x_extremal_points[0];
Circular_arc_point_2 x_extremal_point2 = vector_x_extremal_points[1];
#ifdef CGAL_INTERSECTION_MAP_FOR_XMONOTONIC_ARC_WITH_SAME_SUPPORTING_CIRCLE
std::vector < CGAL::Object > intersecs1;
std::vector < CGAL::Object > intersecs2;
std::vector < CGAL::Object > intersecs3;
#endif
if (A.is_full()) {
const Circular_arc_2 &ca1 = Circular_arc_2(A.supporting_circle(),
x_extremal_point1,
x_extremal_point2);
const Circular_arc_2 &ca2 = Circular_arc_2(A.supporting_circle(),
x_extremal_point2,
x_extremal_point1);
ca1._setx_info(2,1,0); //setting flags outside
ca2._setx_info(2,2,0);
#ifdef CGAL_INTERSECTION_MAP_FOR_SUPPORTING_CIRCLES
// get a number for its supporting circle
unsigned int cn = ca1.circle_number();
ca2.set_circle_number(cn);
#endif
*res++ = make_object(ca1);
*res++ = make_object(ca2);
#ifdef CGAL_INTERSECTION_MAP_FOR_XMONOTONIC_ARC_WITH_SAME_SUPPORTING_CIRCLE
intersecs1.push_back(make_object(std::make_pair(x_extremal_point1,1u)));
intersecs1.push_back(make_object(std::make_pair(x_extremal_point2,1u)));
Circular_arc_2::template put_intersection< std::vector < CGAL::Object > >
(ca1,ca2,intersecs1);
#endif
return res;
}
int cmp_begin = CGAL::compare(A.source().y(), A.center().y());
int cmp_end = CGAL::compare(A.target().y(), A.center().y());
// Define the 2 Circular_arc_endpoints
// in the 2 vertical tangent points
if (cmp_begin > 0) {
const Circular_arc_2 &ca1 = Circular_arc_2(A.supporting_circle(),
A.source(),
x_extremal_point1);
ca1._setx_info(2,2,0);
#ifdef CGAL_INTERSECTION_MAP_FOR_SUPPORTING_CIRCLES
unsigned int cn = ca1.circle_number();
#endif
*res++ = make_object(ca1);
if (cmp_end > 0) {
// We must cut in 3 parts.
const Circular_arc_2 &ca2 = Circular_arc_2(A.supporting_circle(),
x_extremal_point1,
x_extremal_point2);
const Circular_arc_2 &ca3 = Circular_arc_2(A.supporting_circle(),
x_extremal_point2,
A.target());
ca2._setx_info(2,1,0);
ca3._setx_info(2,2,0);
#ifdef CGAL_INTERSECTION_MAP_FOR_SUPPORTING_CIRCLES
ca2.set_circle_number(cn);
ca3.set_circle_number(cn);
#endif
*res++ = make_object(ca2);
*res++ = make_object(ca3);
#ifdef CGAL_INTERSECTION_MAP_FOR_XMONOTONIC_ARC_WITH_SAME_SUPPORTING_CIRCLE
intersecs1.push_back(make_object(std::make_pair(x_extremal_point1,1u)));
intersecs2.push_back(make_object(std::make_pair(x_extremal_point2,1u)));
Circular_arc_2::template put_intersection< std::vector < CGAL::Object > >
(ca1,ca2,intersecs1);
Circular_arc_2::template put_intersection< std::vector < CGAL::Object > >
(ca2,ca3,intersecs2);
Circular_arc_2::template put_intersection< std::vector < CGAL::Object > >
(ca1,ca3,intersecs3); //empty - no intersection
#endif
}
else {
const Circular_arc_2 &ca2 = Circular_arc_2(A.supporting_circle(),
x_extremal_point1,
A.target());
ca2._setx_info(2,1,0);
#ifdef CGAL_INTERSECTION_MAP_FOR_SUPPORTING_CIRCLES
ca2.set_circle_number(cn);
#endif
*res++ = make_object(ca2);
#ifdef CGAL_INTERSECTION_MAP_FOR_XMONOTONIC_ARC_WITH_SAME_SUPPORTING_CIRCLE
intersecs1.push_back(make_object(std::make_pair(x_extremal_point1,1u)));
Circular_arc_2::template put_intersection< std::vector < CGAL::Object > >
(ca1,ca2,intersecs1);
#endif
}
}
else if (cmp_begin < 0) {
const Circular_arc_2 &ca1 = Circular_arc_2(A.supporting_circle(),
A.source(),
x_extremal_point2);
ca1._setx_info(2,1,0);
#ifdef CGAL_INTERSECTION_MAP_FOR_SUPPORTING_CIRCLES
unsigned int cn = ca1.circle_number();
#endif
*res++ = make_object(ca1);
if (cmp_end < 0) {
const Circular_arc_2 &ca2 = Circular_arc_2(A.supporting_circle(),
x_extremal_point2,
x_extremal_point1);
const Circular_arc_2 &ca3 = Circular_arc_2(A.supporting_circle(),
x_extremal_point1,
A.target());
ca2._setx_info(2,2,0);
ca3._setx_info(2,1,0);
#ifdef CGAL_INTERSECTION_MAP_FOR_SUPPORTING_CIRCLES
ca2.set_circle_number(cn);
ca3.set_circle_number(cn);
#endif
*res++ = make_object(ca2);
*res++ = make_object(ca3);
#ifdef CGAL_INTERSECTION_MAP_FOR_XMONOTONIC_ARC_WITH_SAME_SUPPORTING_CIRCLE
intersecs1.push_back(make_object(std::make_pair(x_extremal_point2,1u)));
intersecs2.push_back(make_object(std::make_pair(x_extremal_point1,1u)));
Circular_arc_2::template put_intersection< std::vector < CGAL::Object > >
(ca1,ca2,intersecs1);
Circular_arc_2::template put_intersection< std::vector < CGAL::Object > >
(ca2,ca3,intersecs2);
Circular_arc_2::template put_intersection< std::vector < CGAL::Object > >
(ca1,ca3,intersecs3);
#endif
}
else {
const Circular_arc_2 &ca2 = Circular_arc_2(A.supporting_circle(),
x_extremal_point2,
A.target());
ca2._setx_info(2,2,0);
#ifdef CGAL_INTERSECTION_MAP_FOR_SUPPORTING_CIRCLES
ca2.set_circle_number(cn);
#endif
*res++ = make_object(ca2);
#ifdef CGAL_INTERSECTION_MAP_FOR_XMONOTONIC_ARC_WITH_SAME_SUPPORTING_CIRCLE
intersecs1.push_back(make_object(std::make_pair(x_extremal_point2,1u)));
Circular_arc_2::template put_intersection< std::vector < CGAL::Object > >
(ca1,ca2,intersecs1);
#endif
}
}
else { // cmp_begin == 0
if (CGAL::compare(A.source().x(), A.center().x()) < 0) {
CGAL_kernel_assertion (cmp_end >= 0);
const Circular_arc_2 &ca1 = Circular_arc_2(A.supporting_circle(),
x_extremal_point1,
x_extremal_point2);
const Circular_arc_2 &ca2 = Circular_arc_2(A.supporting_circle(),
x_extremal_point2,
A.target());
ca1._setx_info(2,1,0);
ca2._setx_info(2,2,0);
#ifdef CGAL_INTERSECTION_MAP_FOR_SUPPORTING_CIRCLES
unsigned int cn = ca1.circle_number();
ca2.set_circle_number(cn);
#endif
*res++ = make_object(ca1);
*res++ = make_object(ca2);
#ifdef CGAL_INTERSECTION_MAP_FOR_XMONOTONIC_ARC_WITH_SAME_SUPPORTING_CIRCLE
intersecs1.push_back(make_object(std::make_pair(x_extremal_point2,1u)));
Circular_arc_2::template put_intersection< std::vector < CGAL::Object > >
(ca1,ca2,intersecs1);
#endif
}
else {
CGAL_kernel_assertion
(CGAL::compare(A.source().x(), A.center().x()) > 0);
CGAL_kernel_assertion (cmp_end != LARGER);
const Circular_arc_2 &ca1 = Circular_arc_2(A.supporting_circle(),
x_extremal_point2,
x_extremal_point1);
const Circular_arc_2 &ca2 = Circular_arc_2(A.supporting_circle(),
x_extremal_point1,
A.target());
ca1._setx_info(2,2,0);
ca2._setx_info(2,1,0);
#ifdef CGAL_INTERSECTION_MAP_FOR_SUPPORTING_CIRCLES
unsigned int cn = ca1.circle_number();
ca2.set_circle_number(cn);
#endif
*res++ = make_object(ca1);
*res++ = make_object(ca2);
#ifdef CGAL_INTERSECTION_MAP_FOR_XMONOTONIC_ARC_WITH_SAME_SUPPORTING_CIRCLE
intersecs1.push_back(make_object(std::make_pair(x_extremal_point1,1u)));
Circular_arc_2::template put_intersection< std::vector < CGAL::Object > >
(ca1,ca2,intersecs1);
#endif
}
}
return res;
}
// This is the make_x_monotone function returning extra information:
// The ouput iterator refers to pairs, the first part of which is an
// object containing the x-monotone arc and the second part is a
// boolean defining whether the arc is on the upper part of the
// circle or not. This extra information returned by make_x_monotone
// and make_xy_monotone helps us to avoid doing twice the same
// comparisons by the functions which call these two in order to define
// the position of the returned arcs on the circle , like in the
// construct_bounding_hexagons function
template < class CK, class OutputIterator >
OutputIterator
advanced_make_x_monotone( const typename CK::Circular_arc_2 &A,
OutputIterator res )
{
typedef typename CK::Circular_arc_2 Circular_arc_2;
typedef typename CK::Circle_2 Circle_2;
typedef typename CK::FT FT;
typedef typename CK::Point_2 Point_2;
typedef std::pair<CGAL::Object,bool > S_pair;
int cmp_begin_y = CGAL::compare
(A.source().y(), A.supporting_circle().center().y());
int cmp_end_y = CGAL::compare
(A.target().y(), A.supporting_circle().center().y());
int cmp_x=compare_x(A.source(),A.target());
// We don't need to split
if ((cmp_begin_y != opposite(cmp_end_y)) &&
((((cmp_begin_y > 0) || (cmp_end_y > 0)) && (cmp_x > 0)) ||
(((cmp_begin_y < 0) || (cmp_end_y < 0)) &&
(cmp_x < 0)))) {
*res++ = S_pair(make_object(A),(cmp_begin_y>0 || cmp_end_y>0) );
return res;
}
// Half circles
if (cmp_begin_y == 0 && cmp_end_y == 0 && cmp_x != 0) {
*res++ = std::make_pair(make_object(A), cmp_x>0 );
return res;
}
// We need to split
//CGAL_assertion(!A.is_x_monotone());
if (cmp_begin_y > 0) {
*res++ = S_pair
(make_object(Circular_arc_2(A.supporting_circle(), A.source(),
CircularFunctors::x_extremal_point<CK>
(A.supporting_circle(),true))),
true);
if (cmp_end_y > 0) {
// We must cut in 3 parts.
*res++ = std::make_pair
(make_object(Circular_arc_2 (A.supporting_circle(),
CircularFunctors::x_extremal_point<CK>
(A.supporting_circle(),true),
CircularFunctors::x_extremal_point<CK>
(A.supporting_circle(),false))),
false);
*res++ = std::make_pair
(make_object(Circular_arc_2 (A.supporting_circle(),
CircularFunctors::x_extremal_point<CK>
(A.supporting_circle(),false),
A.target())),
true);
} else {
*res++ = std::make_pair
(make_object(Circular_arc_2 (A.supporting_circle(),
CircularFunctors::x_extremal_point<CK>
(A.supporting_circle(),true),
A.target())),
false);
}
}
else if (cmp_begin_y < 0) {
// Very similar to the previous case.
*res++ = std::make_pair
(make_object(Circular_arc_2 (A.supporting_circle(),
A.source(),
CircularFunctors::x_extremal_point<CK>
(A.supporting_circle(),false))),
false);
if (cmp_end_y < CGAL::EQUAL) {
// We must cut in 3 parts.
*res++ = std::make_pair
(make_object(Circular_arc_2 (A.supporting_circle(),
CircularFunctors::x_extremal_point<CK>
(A.supporting_circle(),false),
CircularFunctors::x_extremal_point<CK>
(A.supporting_circle(),true))) ,
true );
*res++ = std::make_pair
(make_object(Circular_arc_2 (A.supporting_circle(),
CircularFunctors::x_extremal_point<CK>
(A.supporting_circle(),true),
A.target())),
false);
} else {
*res++ = std::make_pair
(make_object(Circular_arc_2 (A.supporting_circle(),
CircularFunctors::x_extremal_point<CK>
(A.supporting_circle(),false),
A.target())),
true);
}
}
else { // cmp_begin_y == 0
if ( compare(A.source().x(),A.supporting_circle().center().x())< 0) {
CGAL_assertion(cmp_end_y >= 0);
*res++ = std::make_pair
(make_object(Circular_arc_2 (A.supporting_circle(),
A.source(),
CircularFunctors::x_extremal_point<CK>
(A.supporting_circle(),false))),
false);
*res++ = std::make_pair
(make_object(Circular_arc_2 (A.supporting_circle(),
CircularFunctors::x_extremal_point<CK>
(A.supporting_circle(),false),
A.target())),
true);
}
else {
CGAL_assertion( compare(A.source().x(),A.supporting_circle().center().x())< 0);
CGAL_assertion(cmp_end_y != LARGER);
*res++ = std::make_pair
(make_object(Circular_arc_2 (A.supporting_circle(),
A.source(),
CircularFunctors::x_extremal_point<CK>
(A.supporting_circle(),true))),
true);
*res++ = std::make_pair
(make_object(Circular_arc_2 (A.supporting_circle(),
CircularFunctors::x_extremal_point<CK>
(A.supporting_circle(),true),
A.target())),
false);
}
}
return res;
}
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
// In the same as the advanced_make_x_monotone works, this make_xy_function
// returns extra information, descriptive of the position of the returned
// xy-monotone arcs on the circle: The output iterator refers to pairs, the
// first part of which is the object containing tha arc and the second part
// is another pair containing 2 booleans which equavalently describe whether the
// returned xy-monotone arc is on the upper part and the left side of the circle
template < typename CK , typename Output_iterator>
Output_iterator
advanced_make_xy_monotone( const typename CK::Circular_arc_2 &a,
Output_iterator res)
{
typedef typename CK::Circular_arc_2 Circular_arc_2;
typedef std::pair<bool, bool> relat_pos;
typedef std::pair< CGAL::Object, bool> Obj_descr_1;
typedef std::pair< CGAL::Object, relat_pos> Obj_descr_2;
typedef std::vector<Obj_descr_1> Obj_vector_1;
typedef std::vector<Obj_descr_2> Obj_vector_2;
Obj_vector_1 vec;
Obj_vector_2 vec2;
Obj_descr_2 dscr2;
advanced_make_x_monotone<CK>(a,std::back_inserter(vec));
for(unsigned int i=0;i<vec.size();i++) {
const Circular_arc_2 *tmp_arc =
CGAL::object_cast<Circular_arc_2>(&vec.at(i).first);
int cmp_begin_x = CGAL::compare
(tmp_arc->source().x(), tmp_arc->supporting_circle().center().x());
int cmp_end_x = CGAL::compare
(tmp_arc->target().x(), tmp_arc->supporting_circle().center().x());
if(cmp_begin_x!=opposite(cmp_end_x) || cmp_begin_x==CGAL::EQUAL) {
dscr2.first=vec.at(i).first;
dscr2.second.first=vec.at(i).second;
dscr2.second.second= (cmp_begin_x==CGAL::SMALLER ||
cmp_end_x==CGAL::SMALLER ) ?
true : false;
*res++=dscr2; // The arc is xy_monotone
}
else{ //We have to split the x_monotone_arc into 2 y_monotone arcs
Obj_descr_1 tmp=vec.at(i);
Obj_descr_2 tmp1,tmp2;
const Circular_arc_2 *tmp_arc =
CGAL::object_cast<Circular_arc_2>(&tmp.first);
tmp1.first = make_object
(Circular_arc_2(a.supporting_circle(),tmp_arc->source(),
CircularFunctors::y_extremal_point<CK>
(a.supporting_circle(),!tmp.second)));
tmp1.second.first=tmp.second;
tmp1.second.second= (tmp.second)? false : true ;
tmp2.first = make_object
(Circular_arc_2(a.supporting_circle(),
CircularFunctors::y_extremal_point<CK>
(a.supporting_circle(),!tmp.second),
tmp_arc->target()));
tmp2.second.first=tmp.second;
tmp2.second.second= (tmp.second)? true : false ;
*res++=tmp1;
*res++=tmp2;
}
}
return res;
}
template <class CK>
CGAL::Bbox_2 circular_arc_bbox
( const typename CK::Kernel_base::Circular_arc_2 & a)
{
typedef typename CK::Root_of_2 Root_of_2;
typedef typename CK::FT FT;
typedef CGAL::Interval_nt<false>::Protector IntervalProtector;
typedef CGAL::Interval_nt<false> Interval;
if(a.is_x_monotone()) {
// The arc is xy-monotone so we just add the bboxes of the endpoints
if(a.is_y_monotone())
return a.left().bbox() + a.right().bbox();
// Just x-monotone, so we have to find the y-critical point
bool is_on_upper = a.on_upper_part();
Bbox_2
left_bb = a.left().bbox(),
right_bb = a.right().bbox();
IntervalProtector ip;
Interval cy = to_interval(a.center().y());
Interval r2 = to_interval(a.squared_radius());
Interval r = CGAL::sqrt(r2);
double ymin, ymax;
if(is_on_upper) {
ymin = (CGAL::min)(left_bb.ymin(),right_bb.ymin());
ymax = cy.sup() + r.sup();
} else {
ymin = cy.inf() - r.sup();
ymax = (CGAL::max)(left_bb.ymax(),right_bb.ymax());
}
/*
double ymin = (is_on_upper) ?
(CGAL::min)(left_bb.ymin(),right_bb.ymin()) :
to_interval
( CircularFunctors::y_extremal_point<CK>(a.supporting_circle(),true).y()).first;
double ymax = (is_on_upper) ?
to_interval
( CircularFunctors::y_extremal_point<CK>(a.supporting_circle(),false).y() ).second :
CGAL::max(left_bb.ymax(),right_bb.ymax());
*/
return Bbox_2(left_bb.xmin(),ymin,right_bb.xmax(),ymax);
}
if(a.is_y_monotone()) {
bool is_on_left = a.on_left_part();
IntervalProtector ip;
Bbox_2
source_bb = a.source().bbox(),
target_bb = a.target().bbox();
Interval cx = to_interval(a.center().x());
Interval r2 = to_interval(a.squared_radius());
Interval r = CGAL::sqrt(r2);
double xmin, xmax;
if(is_on_left) {
xmax = (CGAL::max)(source_bb.xmax(), target_bb.xmax());
xmin = cx.inf() - r.sup();
} else {
xmax = cx.sup() + r.sup();
xmin = (CGAL::min)(source_bb.xmin(), target_bb.xmin());
}
return Bbox_2(xmin,
(CGAL::min)(source_bb.ymin(),target_bb.ymin()),
xmax,
(CGAL::max)(source_bb.ymax(),target_bb.ymax()));
}
// Else return the bounding box of the circle.
return a.supporting_circle().bbox();
/* More precise version for non-x-monotone arcs.
double xmin,xmax,ymin,ymax;
// In this case, we can't avoid doing these heavy comparisons
Comparison_result cmp_source_x=compare(a.source().x(),a.supporting_circle().center().x()),
cmp_target_x=compare(a.target().x(),a.supporting_circle().center().x()),
cmp_source_y=compare(a.source().y(),a.supporting_circle().center().y()),
cmp_target_y=compare(a.target().y(),a.supporting_circle().center().y());
//Since it's not x-monotone, it must include at least one x-critical point
if(cmp_source_y==cmp_target_y || cmp_source_y==0 || cmp_target_y==0)
{
if(cmp_source_x==cmp_target_x || cmp_source_x==0 || cmp_target_x==0)
return a.supporting_circle().bbox();
xmin=to_interval( x_extremal_points<CK>(a.supporting_circle(),true).x() ).first;
xmax=to_interval( x_extremal_points<CK>(a.supporting_circle(),false).x() ).second;
if( cmp_source_y==LARGER || cmp_target_y==LARGER)
{
ymin=to_interval( y_extremal_point<CK>(a.supporting_circle(),true).y() ).first;
ymax=(CGAL::max)(to_interval(a.source().y()).second,to_interval(a.target().y()).second);
}
else{
ymax=to_interval( y_extremal_point<CK>(a.supporting_circle(),false).y() ).second;
ymin=(CGAL::min)(to_interval(a.source().y()).first,to_interval(a.target().y()).first);
}
return Bbox_2(xmin,ymin,xmax,ymax);
}
if(cmp_source_y > EQUAL)
{
xmin=to_interval(x_extremal_points<CK>(a.supporting_circle(),true).x()).first;
xmax=(CGAL::max)(to_interval(a.source().x()).second,to_interval(a.target().x()).second);
}
else
{
xmin=(CGAL::min)(to_interval(a.source().x()).first,to_interval(a.target().x()).first);
xmax=to_interval(x_extremal_points<CK>(a.supporting_circle(),false).x()).second;
}
if( ( cmp_source_y== LARGER && cmp_source_x>= EQUAL) ||
( cmp_target_y== LARGER && cmp_target_x<= EQUAL) )
ymax=to_interval(y_extremal_point<CK>(a.supporting_circle(),false).y()).second;
else
ymax=(CGAL::max)(to_interval(a.source().y()).second,to_interval(a.target().y()).second);
if( ( cmp_source_y== SMALLER && cmp_source_x<= EQUAL) ||
( cmp_target_y== SMALLER && cmp_target_x>= EQUAL) )
ymin=to_interval(y_extremal_point<CK>(a.supporting_circle(),true).y()).first;
else
ymin=(CGAL::min)(to_interval(a.source().y()).first,to_interval(a.target().y()).first);
return Bbox_2(xmin,ymin,xmax,ymax);
*/
}
} // namespace CircularFunctors
} // namespace CGAL
#endif // CGAL_CIRCULAR_KERNEL_PREDICATES_ON_CIRCULAR_ARC_2_H
|