File: Compute_anchor_3.h

package info (click to toggle)
cgal 4.0-5
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 65,068 kB
  • sloc: cpp: 500,870; ansic: 102,544; sh: 321; python: 92; makefile: 75; xml: 2
file content (594 lines) | stat: -rw-r--r-- 18,439 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
// Copyright (c) 2005 Rijksuniversiteit Groningen (Netherlands)
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Skin_surface_3/include/CGAL/Compute_anchor_3.h $
// $Id: Compute_anchor_3.h 67117 2012-01-13 18:14:48Z lrineau $
// 
//
// Author(s)     : Nico Kruithof <Nico@cs.rug.nl>

#ifndef CGAL_COMPUTE_ANCHOR_3_H
#define CGAL_COMPUTE_ANCHOR_3_H

#include <CGAL/Regular_triangulation_3.h>
#include <CGAL/Triangulation_simplex_3.h>

namespace CGAL {

template < class RegularTriangulation_3>
class Compute_anchor_3
{
public:
  typedef RegularTriangulation_3                       Regular_triangulation;
  typedef typename Regular_triangulation::Geom_traits  Geom_traits;
  typedef typename Geom_traits::Weighted_point         Weighted_point;
  
  typedef typename RegularTriangulation_3::Vertex_handle Vertex_handle;
  typedef typename RegularTriangulation_3::Cell_handle   Cell_handle;
  typedef typename RegularTriangulation_3::Facet         Facet;
  typedef typename RegularTriangulation_3::Edge          Edge;
  
  typedef typename RegularTriangulation_3::Finite_vertices_iterator Finite_vertices_iterator;
  typedef typename RegularTriangulation_3::Finite_edges_iterator    Finite_edges_iterator;
  typedef typename RegularTriangulation_3::Finite_facets_iterator   Finite_facets_iterator;
  typedef typename RegularTriangulation_3::Finite_cells_iterator    Finite_cells_iterator;
  typedef typename RegularTriangulation_3::Facet_circulator         Facet_circulator;
  typedef Triangulation_simplex_3<RegularTriangulation_3>           Simplex;

  typedef typename std::list<Simplex>::iterator                     Simplex_iterator;

  Compute_anchor_3(const RegularTriangulation_3 &reg) : reg(reg) {
  }

  Simplex anchor_del( const Vertex_handle v ) {
    equiv_anchors.clear();
    return v;
  }
  Simplex anchor_del( const Edge &e ) {
    return compute_anchor_del(e);
  }
  Simplex anchor_del( const Facet &f ) {
    return compute_anchor_del(f);
  }
  Simplex anchor_del( const Cell_handle ch ) {
    return compute_anchor_del(ch);
  }
  Simplex anchor_del( const Simplex &s ) {
    int dim = s.dimension();
    if (dim == 0) {
      Vertex_handle vh = s;
      return anchor_del(vh);
    } else if (dim == 1) {
      Edge e = s;
      return anchor_del(e);
    } else if (dim == 2) {
      Facet f = s;
      return anchor_del(f);
    } else if (dim == 3) {
      Cell_handle ch = s;
      return anchor_del(ch);
    }
    CGAL_error();
    return Simplex();
  }
  Simplex anchor_vor( const Vertex_handle v ) {
    return compute_anchor_vor(v);
  }
  Simplex anchor_vor( const Edge &e ) {
    return compute_anchor_vor(e);
  }
  Simplex anchor_vor( const Facet &f ) {
    return compute_anchor_vor(f);
  }
  Simplex anchor_vor( const Cell_handle ch ) {
    equiv_anchors.clear();
    for (int i=0; i<4; i++) {
      Cell_handle ch2 = ch->neighbor(i);
      if (!reg.is_infinite(ch2)) {
        Sign side = test_anchor(ch,ch2);
        CGAL_assertion(test_anchor(ch2,ch)==side);
        if (side==ZERO) {
          equiv_anchors.push_back(ch2);
        } else {
          CGAL_assertion(side==POSITIVE);
        }
      }
    }
    return ch;
  }
  Simplex anchor_vor( const Simplex &s ) {
    int dim = s.dimension();
    if (dim == 0) {
      return anchor_vor(Vertex_handle(s));
    } else if (dim == 1) {
      return anchor_vor(Edge(s));
    } else if (dim == 2) {
      return anchor_vor(Facet(s));
    } else if (dim == 3) {
      return anchor_vor(Cell_handle(s));
    }
    return Simplex();
  }

  bool is_degenerate() {
    return !equiv_anchors.empty();
  }
  Simplex_iterator equivalent_anchors_begin() {
    return equiv_anchors.begin();
  }
  Simplex_iterator equivalent_anchors_end() {
    return equiv_anchors.end();
  }
private:
  ///////////////////////////////
  // Anchor functions
  ///////////////////////////////
  Simplex compute_anchor_del( Edge const &e );
  Simplex compute_anchor_del( Facet const &f );
  Simplex compute_anchor_del( Cell_handle const ch );
  
  Simplex compute_anchor_vor( Vertex_handle const v );
  Simplex compute_anchor_vor( Edge const &e );
  Simplex compute_anchor_vor( Facet const &f );

  // Test whether the anchor of edge (wp1,wp2) and wp2 are equal
  Sign test_anchor(Weighted_point &wp1, Weighted_point &wp2) {
    return 
      reg.geom_traits().in_smallest_orthogonal_sphere_3_object()(wp1, wp2);
  }
  Sign test_anchor(Weighted_point const& wp1, Weighted_point const& wp2, 
                   Weighted_point const& wp3) {
    return 
      reg.geom_traits().in_smallest_orthogonal_sphere_3_object()(wp1, wp2, wp3);
  }
  Sign test_anchor(Weighted_point const& wp1, Weighted_point const& wp2, 
                   Weighted_point const& wp3, Weighted_point const& wp4) {
    return 
      reg.geom_traits().in_smallest_orthogonal_sphere_3_object()(wp1, wp2, wp3, wp4);
  }
  // Test whether the anchor of e and anchor of e.first->vertex(i) are equal
  Sign test_anchor(Edge e, int i) {
    CGAL_assertion(!reg.is_infinite(e));
    CGAL_assertion(e.second == i || e.third == i);
    Weighted_point wp1, wp2;
    Cell_handle ch = e.first;
    return test_anchor(
      ch->vertex(e.second+e.third-i)->point(),
      ch->vertex(i)->point());
  }
  // Test whether the anchor of f and anchor of the edge f - f.first->vertex(i)
  // are equal
  Sign test_anchor(Facet f, int i){
    CGAL_assertion(!reg.is_infinite(f));
    CGAL_assertion(f.second != i);
    CGAL_assertion(0<=f.second && f.second<4);
    CGAL_assertion(0<=i && i<4);

    Weighted_point wp1, wp2, wp3;
    Cell_handle ch = f.first;
    wp3 = ch->vertex(i)->point();
    switch ((4+i-f.second)&3) {
      case 1: CGAL_assertion (((f.second+1)&3) == i);
        wp1 = ch->vertex((f.second+2)&3)->point();
        wp2 = ch->vertex((f.second+3)&3)->point();
        break;
      case 2: CGAL_assertion (((f.second+2)&3) == i);
        wp1 = ch->vertex((f.second+1)&3)->point();
        wp2 = ch->vertex((f.second+3)&3)->point();
        break;
      case 3: CGAL_assertion (((f.second+3)&3) == i);
        wp1 = ch->vertex((f.second+1)&3)->point();
        wp2 = ch->vertex((f.second+2)&3)->point();
        break;
      default:
        CGAL_error();
    }

    return 
      reg.geom_traits().in_smallest_orthogonal_sphere_3_object()(wp1, wp2, wp3);
  }


  // Test whether the anchor of ch and anchor of the facet (ch,i) are equal
  Sign test_anchor(Cell_handle ch, int i) {
    CGAL_assertion(!reg.is_infinite(ch));

    return reg.geom_traits().in_smallest_orthogonal_sphere_3_object()(
      ch->vertex((i+1)&3)->point(),
      ch->vertex((i+2)&3)->point(),
      ch->vertex((i+3)&3)->point(),
      ch->vertex(i)->point());                
  }
  Sign test_anchor(Cell_handle ch, Cell_handle ch2) {
    CGAL_assertion(!reg.is_infinite(ch));
    CGAL_assertion(!reg.is_infinite(ch2));

    int index = ch2->index(ch);
    return reg.geom_traits().in_smallest_orthogonal_sphere_3_object()(
      ch->vertex(0)->point(),
      ch->vertex(1)->point(),
      ch->vertex(2)->point(),
      ch->vertex(3)->point(),
      ch2->vertex(index)->point());                
  }
  Sign test_anchor(
    Weighted_point const& wp1, Weighted_point const& wp2,
    Weighted_point const& wp3, Weighted_point const& wp4,
    Weighted_point const& wp5) {
    return reg.geom_traits().in_smallest_orthogonal_sphere_3_object()(
      wp1, wp2, wp3, wp4, wp5);                
  }

  const Regular_triangulation &reg;
  std::list<Simplex> equiv_anchors;
};


// compute_anchor_del

template < class RegularTriangulation3 >
typename Compute_anchor_3<RegularTriangulation3>::Simplex
Compute_anchor_3<RegularTriangulation3>::
compute_anchor_del(Edge const &e) {
  CGAL_assertion(!reg.is_infinite(e));
  equiv_anchors.clear();
  Sign result = test_anchor(e, e.second);
  if (result==NEGATIVE) {
    return Simplex(e.first->vertex(e.third));
  } else if (result==ZERO) {
    equiv_anchors.push_back(Simplex(e.first->vertex(e.third)));
  }
  result = test_anchor(e, e.third);
  if (result==NEGATIVE) {
    equiv_anchors.clear();
    return Simplex(e.first->vertex(e.second));
  } else if (result==ZERO) {
    equiv_anchors.push_back(Simplex(e.first->vertex(e.third)));
  } 
  return Simplex(e);
}

template < class RegularTriangulation3 >
typename Compute_anchor_3<RegularTriangulation3>::Simplex
Compute_anchor_3<RegularTriangulation3>::
compute_anchor_del(Facet const &f) {
  CGAL_assertion(!reg.is_infinite(f));
  equiv_anchors.clear();

  int i;
  Sign result;
  bool contains_center = true;
  for (i=1; (i<4) && contains_center; i++) {
    result = test_anchor(f, (f.second+i)&3);
    contains_center = (result != NEGATIVE);
    if (result == ZERO) {
      //equiv_anchors.push_back(Edge(f.first, f.second,(f.second+i)&3));
      equiv_anchors.push_back(
        Edge(f.first, (f.second+(i==1?2:1))&3, (f.second+(i==3?2:3))&3));
    }
  }
  
  if (contains_center) {
    return Simplex(f);
  } else {
    i--;
    Edge e; e.first = f.first; 
    if (i==1) e.second = ((f.second+2)&3); 
    else e.second = ((f.second+1)&3);
    if (i==3) e.third = ((f.second+2)&3); 
    else e.third = ((f.second+3)&3);

    Simplex s = anchor_del(e);
    if (s.dimension() == 1) {
      equiv_anchors.clear();
      return s;
    } else {
      // The anchor is the anchor of the other edge adjacent to tmp
      CGAL_assertion(s.dimension() == 0);
      Vertex_handle vh=s;
      e.second = e.first->index(vh);
      e.third = (f.second+i)&3;

      s = anchor_del(e);
      equiv_anchors.clear();
      return s;
    }
  }
}

template < class RegularTriangulation3 >
typename Compute_anchor_3<RegularTriangulation3>::Simplex
Compute_anchor_3<RegularTriangulation3>::
compute_anchor_del(Cell_handle const ch) {
  CGAL_assertion(!reg.is_infinite(ch));
  equiv_anchors.clear();
  
  Simplex s;
  bool contains_center = true;
  Sign result;
  for (int i=0; (i<4) && contains_center; i++) {
    result = test_anchor(ch, i);
    if (result == NEGATIVE) {
      contains_center = false;
      s = anchor_del(Facet(ch,i));
    } else if (result == ZERO) {
      equiv_anchors.push_back(Facet(ch,i));
    }
  }

  if (contains_center) {
    return Simplex(ch);
  } else {
    Simplex tmp;

    bool found=true;
    while (true) {
      if (s.dimension() == 1) {
        // Test two adjacent facets
        Edge e=s;
        int ind1 = ch->index(e.first->vertex(e.second));
        int ind2 = ch->index(e.first->vertex(e.third));
        for (int i=0; (i<4) && found; i++) {
          if ((i != ind1) && (i != ind2)) {
            tmp = anchor_del(Facet(ch, i));
            found = (s == tmp);
          }
        }
      } else if (s.dimension() == 0) {
        // Test adjacent edges
        Vertex_handle vh=s;
        int index = ch->index(vh);
        for (int i=0; (i<4) && found; i++) {
          if (i != index) {
            tmp = anchor_del(Edge(ch, index, i));
            found = (s == tmp);
          }
        }
      } else {
        CGAL_assertion(s.dimension() == 2);
      }
      if (found) {
        equiv_anchors.clear();
  return s;
      }
      found = true;
      s = tmp;
    }
  }
}

template < class RegularTriangulation3 >
typename Compute_anchor_3<RegularTriangulation3>::Simplex
Compute_anchor_3<RegularTriangulation3>::
compute_anchor_vor (Vertex_handle const v) {
  CGAL_assertion(!reg.is_infinite(v));
  CGAL_assertion(reg.is_vertex(v));

  equiv_anchors.clear();

  Sign side;
  bool contains_center=true;
  Simplex s;

  std::list<Vertex_handle> adj_vertices;
  typename std::list<Vertex_handle>::iterator adj_vertex;
  reg.incident_vertices(v, std::back_inserter(adj_vertices));
  
  for (adj_vertex = adj_vertices.begin(); 
       (adj_vertex != adj_vertices.end()) && contains_center;
       adj_vertex++) {
    if (!reg.is_infinite(*adj_vertex)) {
      side = test_anchor(v->point(),(*adj_vertex)->point());
      if (side == NEGATIVE) { 
        contains_center = false;
      } else if (side == ZERO) {
        Edge e;
        if (!reg.is_edge (v, *adj_vertex, e.first, e.second, e.third)) {
          CGAL_error();
        }
        equiv_anchors.push_back(Simplex(e));
      }
    }
  }

  if (contains_center) {
    return Simplex(v);
  } else {
    adj_vertex--;
    Edge e;
    if (!reg.is_edge(v, *adj_vertex, e.first, e.second, e.third)) {
      CGAL_error();
    }
    s = anchor_vor(e);
    Simplex tmp;
    while (true) {
      bool found = true;
      if (s.dimension() == 2) {
        // s lies on a Voronoi edge
        Facet f=s;
        int index = f.first->index(v);
        for (int i=1; (i<4) && found; i++) {
          if (((f.second+i)&3) != index) {
            tmp = anchor_vor(Edge(f.first, index, (f.second+i)&3));
            found = (tmp == s);
          }
        }
      } else if (s.dimension() == 3) {
        //  s lies on a Voronoi vertex
        Cell_handle ch=s;
        CGAL_assertion(ch != Cell_handle());
        int index = ch->index(v);
        for (int i=1; (i<4) && (found); i++) {
          tmp = anchor_vor(Facet(ch, (index+i)&3));
          found = (tmp == s);
        }
      } else {
        CGAL_assertion(s.dimension() == 1);
      }
      if (found) {
        equiv_anchors.clear();
        if (s.dimension() == 1) {
          Edge e = s;
          Vertex_handle v_other = e.first->vertex(e.second+e.third-e.first->index(v));
          for (adj_vertex = adj_vertices.begin(); 
               adj_vertex != adj_vertices.end();
               adj_vertex++) {
            if ((v_other != (*adj_vertex)) && (!reg.is_infinite(*adj_vertex))) {
              CGAL_assertion(!reg.is_infinite(v));
              CGAL_assertion(!reg.is_infinite(v_other));
              CGAL_assertion(!reg.is_infinite(*adj_vertex));
              side = test_anchor(v->point(), v_other->point(),
                                 (*adj_vertex)->point());
              if (side==ZERO) {
                Edge e2;
                if (!reg.is_edge(v, *adj_vertex, e2.first, e2.second, e2.third)) {
                  CGAL_error();
                }
                equiv_anchors.push_back(e2);
              }
            }
          }          
        }
        return s;
      }
      s = tmp;
    }
  }
}

template < class RegularTriangulation3 >
typename Compute_anchor_3<RegularTriangulation3>::Simplex
Compute_anchor_3<RegularTriangulation3>::compute_anchor_vor (Edge const &e) {
  CGAL_assertion(!reg.is_infinite(e));

  equiv_anchors.clear();

  Vertex_handle v0 = e.first->vertex(e.second);
  Vertex_handle v1 = e.first->vertex(e.third);

  bool contains_center = true;
  Sign side;
  Simplex s;
  
  Facet_circulator fcir, fstart;
  fstart = fcir = reg.incident_facets(e);

  do {
    if (!reg.is_infinite(*fcir)) {
      int i = 6 - (*fcir).second -
        (*fcir).first->index(v0) - (*fcir).first->index(v1);
      side = test_anchor(*fcir, i);
      if (side == NEGATIVE) {
        contains_center = false;
        s = anchor_vor(Facet(*fcir));
      } else if (side == ZERO) {
        equiv_anchors.push_back(Facet(*fcir));
      }
    }
  } while (++fcir != fstart);
  
  if (contains_center) {
    s = Simplex(e);
    return s;
  } else {
    Simplex tmp;
    while (true) {
      bool found = true;
      if (s.dimension() == 3) {
        CGAL_assertion(s.dimension() == 3);
        Cell_handle ch=s;
        int index0 = ch->index(v0);
        int index1 = ch->index(v1);
        for (int i=0; (i<4) && found; i++) {
          if ((i != index0) && (i != index1)) {
            if (!reg.is_infinite(Facet(ch,i))) {
              side = test_anchor(ch,6-index0-index1-i);
              if (side != POSITIVE) {
                tmp = anchor_vor(Facet(ch,i));
                found = (s==tmp);
              }
            }
          }
        }
      } else {
        CGAL_assertion(s.dimension() == 2);
      }
      if (found) {
        equiv_anchors.clear();
        if (s.dimension() == 2) {
          // Check whether facet is degenerate (a line segment):
          Facet f = s;
          int index = 6 - f.second - f.first->index(v0) - f.first->index(v1);
          fstart = fcir = reg.incident_facets(e);
          do {
            if (!reg.is_infinite(*fcir)) {
              int index2 = 6 - (*fcir).second
                             - (*fcir).first->index(v0) 
                             - (*fcir).first->index(v1);
            if (!(f.first->vertex(index) == (*fcir).first->vertex(index2))) {
                side = test_anchor(v0->point(), v1->point(),
                                   f.first->vertex(index)->point(), 
                                   (*fcir).first->vertex(index2)->point());
                if (side == ZERO) {
                  equiv_anchors.push_back(Facet(*fcir));
                }
              }
            }
          } while (++fcir != fstart);
        }
        return s;
      }
      s = tmp;
    }
  }
}

template < class RegularTriangulation3 >
typename Compute_anchor_3<RegularTriangulation3>::Simplex
Compute_anchor_3<RegularTriangulation3>::compute_anchor_vor (Facet const &f) {
  CGAL_assertion(!reg.is_infinite(f));
  equiv_anchors.clear();
  
  Sign side;
  
  CGAL_assertion(f.first != Cell_handle());
  if (!reg.is_infinite(f.first)) {
    side = test_anchor(f.first, f.second);
    if (side==NEGATIVE) {
      return Simplex(f.first);
    } else if (side == ZERO) {
      equiv_anchors.push_back(f.first);
    }
  }

  Cell_handle neighbor = f.first->neighbor(f.second);
  CGAL_assertion(neighbor != Cell_handle());
  if (!reg.is_infinite(neighbor)) {
    int n_index = neighbor->index(f.first);
    side = test_anchor(neighbor, n_index);
    if (side==NEGATIVE) {
      CGAL_assertion(equiv_anchors.empty());
      return Simplex(neighbor);
    } else if (side == ZERO) {
      equiv_anchors.push_back(neighbor);
    }
  }

  return Simplex(f);
}


} //namespace CGAL

#endif // CGAL_COMPUTE_ANCHOR_3_H