File: Fixed_alpha_shape_3.h

package info (click to toggle)
cgal 4.0-5
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 65,068 kB
  • sloc: cpp: 500,870; ansic: 102,544; sh: 321; python: 92; makefile: 75; xml: 2
file content (1120 lines) | stat: -rw-r--r-- 39,707 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
// Copyright (c) 2009  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the so
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Alpha_shapes_3/include/CGAL/Fixed_alpha_shape_3.h $
// $Id: Fixed_alpha_shape_3.h 67117 2012-01-13 18:14:48Z lrineau $
// 
//
// Author(s)     : Sebastien Loriot
//

#ifndef CGAL_FIXED_ALPHA_SHAPE_3_H
#define CGAL_FIXED_ALPHA_SHAPE_3_H

#include <CGAL/basic.h>

#include <set>
#include <map>
#include <list>
#include <vector>
#include <algorithm>
#include <utility>
#include <iostream>
#include <queue>
#include <boost/next_prior.hpp>

#include <CGAL/Triangulation_utils_3.h>
#include <CGAL/Unique_hash_map.h>
#include <CGAL/iterator.h>
#ifdef CGAL_USE_GEOMVIEW
#include <CGAL/IO/Geomview_stream.h>  // TBC
#endif

#include <CGAL/internal/Classification_type.h>

#include <CGAL/Triangulation_3.h>


namespace CGAL{

namespace internal{
  //small utility to select the correct predicate in the weighted case
  template <class One_alpha,class Weighted_tag>
  struct Simplex_classif_predicate;

  template <class One_alpha>
  struct Simplex_classif_predicate<One_alpha,Tag_false>{
    static
    typename One_alpha::Triangulation::Geom_traits::Compare_squared_radius_3
    predicate(const typename One_alpha::Triangulation& T){
      return T.geom_traits().compare_squared_radius_3_object();
    }
  };

  template <class One_alpha>
  struct Simplex_classif_predicate<One_alpha,Tag_true>{
    static
    typename One_alpha::Triangulation::Geom_traits::Compare_weighted_squared_radius_3
    predicate(const typename One_alpha::Triangulation& T){
      return T.geom_traits().compare_weighted_squared_radius_3_object();
    }
  };
  
  //small utility to insert hidden vertices after a removal (in non-weighted case do nothing)
  template <class One_alpha,class Weighted_tag=::CGAL::Tag_true>
  struct Hidden_inserter
  {
    typedef typename One_alpha::Triangulation Dt;
    
    template <class Vertex_remover>
    static void insert(One_alpha& one_alpha, Vertex_remover& remover)
    {
      typename One_alpha::Cell_handle c;
      for (typename Vertex_remover::Hidden_points_iterator
        hi = remover.hidden_points_begin();
        hi != remover.hidden_points_end(); ++hi) 
      {
        typename One_alpha::Vertex_handle hv = one_alpha.insert (*hi, c);
        if (hv != typename One_alpha::Vertex_handle()) c = hv->cell();
      }
    }
  };
  
  template <class One_alpha>
  struct Hidden_inserter<One_alpha,::CGAL::Tag_false>{
    typedef typename One_alpha::Triangulation Dt;
    template <class Vertex_remover>
    static void insert(const One_alpha&,const Vertex_remover&){}
  };
  
  
} //internal


template < class Dt >
class Fixed_alpha_shape_3 : public Dt
{
  // DEFINITION The class Fixed_alpha_shape_3<Dt> represents the 
  // alpha-shape for a set of points (or a set of weighted points)
  // for a given value of alpha. The alphashape is defined  through
  // the Delaunay tetrahedralization of the points
  // (or the Regular tetrahedralization in case of weighted points)
  // and depends on the value of a parameter called alpha.
  // The alpha_shape is the domain of a subcomplex of this triangulation
  // called the Alpha_complex. The alpha_complex includes any simplex
  // having  a circumscribing sphere (an orthogonal sphere
  // in case of weighted points) empty of other points
  // (or suborthogonal to other sites in case of weighted points)
  // with squared radius equal or less than alpha
 
  // In each k-dimensional simplex of the triangulation
  // for (k=0,1,2) 
  // can be classified as EXTERIOR, SINGULAR, REGULAR
  // or INTERIOR with respect to the alpha shape.
  // A $k$ simplex is REGULAR if it is on the boundary
  // of the alpha_complex and belongs to a $k+1$ simplex in the complex
  // and it is SINGULAR simplex if it is  a boundary simplex tht is not
  // included in a $k+1$ simplex of the complex.
  
  // Roughly, the Fixed_alpha_shape data structure computes and stores, 
  // for each simplex it classification type.
  

  //------------------------- TYPES ------------------------------------

public:
  typedef Dt                                        Triangulation;
  typedef typename Dt::Geom_traits                  Gt;
  typedef typename Dt::Triangulation_data_structure Tds;

  //Classification type: no longer an enum inside the class as Vertex and cell must know it
  typedef internal::Classification_type             Classification_type;
  static const Classification_type                  EXTERIOR = internal::EXTERIOR;
  static const Classification_type                  REGULAR  = internal::REGULAR;
  static const Classification_type                  INTERIOR = internal::INTERIOR;
  static const Classification_type                  SINGULAR = internal::SINGULAR;

  typedef typename Gt::FT                           Coord_type;
  typedef Coord_type                                NT;
  typedef Coord_type                                FT;

  typedef typename Gt::Point_3                      Point;
  
  typedef typename Dt::Cell_handle                  Cell_handle;
  typedef typename Dt::Vertex_handle                Vertex_handle;
  typedef typename Dt::Facet                        Facet;
  typedef typename Dt::Edge                         Edge;

  typedef typename Dt::Cell_circulator              Cell_circulator;
  typedef typename Dt::Facet_circulator             Facet_circulator;

  typedef typename Dt::Cell_iterator                Cell_iterator;
  typedef typename Dt::Facet_iterator               Facet_iterator;
  typedef typename Dt::Edge_iterator                Edge_iterator;
  typedef typename Dt::Vertex_iterator              Vertex_iterator;

  typedef typename Dt::Finite_cells_iterator        Finite_cells_iterator;
  typedef typename Dt::Finite_facets_iterator       Finite_facets_iterator;
  typedef typename Dt::Finite_edges_iterator        Finite_edges_iterator;
  typedef typename Dt::Finite_vertices_iterator     Finite_vertices_iterator;

  typedef typename Dt::Locate_type                  Locate_type;
  typedef typename Dt::Weighted_tag                 Weighted_tag;

  using Dt::dimension;
  using Dt::finite_facets_begin;
  using Dt::finite_facets_end;
  using Dt::finite_edges_begin;
  using Dt::finite_edges_end;
  using Dt::all_edges_begin;
  using Dt::all_edges_end;
  using Dt::finite_vertices_begin;
  using Dt::finite_vertices_end;
  using Dt::finite_cells_begin;
  using Dt::finite_cells_end;
  using Dt::VERTEX;
  using Dt::EDGE;
  using Dt::FACET;
  using Dt::CELL;
  using Dt::OUTSIDE_CONVEX_HULL;
  using Dt::OUTSIDE_AFFINE_HULL;
  using Dt::vertex_triple_index;
  using Dt::finite_adjacent_vertices;
  using Dt::find_conflicts;
  using Dt::is_edge;
  using Dt::incident_vertices;
  using Dt::incident_facets;
  using Dt::is_infinite;
  using Dt::is_Gabriel;
  using Dt::tds;

  typedef std::pair<Vertex_handle, Vertex_handle>          Vertex_handle_pair;
  typedef std::map<Vertex_handle_pair,Classification_type> Edge_status_map;

  //test if a simplex is exterior to the alpha-shape
  class Exterior_simplex_test{
    const Fixed_alpha_shape_3 * _as;
  public:
    Exterior_simplex_test() {}
    Exterior_simplex_test(const Fixed_alpha_shape_3 * as) {_as = as;}
    bool operator() ( const Finite_cells_iterator& fci) const {
      return _as->classify(fci) == EXTERIOR ;
    }
    bool operator() ( const Finite_vertices_iterator& fvi) const {
      return _as->classify(fvi) == EXTERIOR ;
    }
    bool operator() ( const Finite_facets_iterator& ffi) const {
      return _as->classify(*ffi) == EXTERIOR ;
    }
    bool operator() ( const Finite_edges_iterator& fei) const {
      return _as->classify(*fei) == EXTERIOR ;
    }
  };

  typedef Filter_iterator< Finite_vertices_iterator, Exterior_simplex_test> Alpha_shape_vertices_iterator;
  typedef Filter_iterator< Finite_facets_iterator, Exterior_simplex_test>   Alpha_shape_facets_iterator;
  typedef Filter_iterator< Finite_edges_iterator, Exterior_simplex_test>    Alpha_shape_edges_iterator;
  typedef Filter_iterator< Finite_cells_iterator, Exterior_simplex_test>    Alpha_shape_cells_iterator;
  
 
  Vertex_handle 
  insert(const Point& p,Cell_handle start=Cell_handle())
  {
    if (this->dimension() < 3){
      Vertex_handle new_v=Triangulation::insert(p,start);
      if (this->dimension() == 3) initialize_alpha();
      return new_v;
    }
    
    //Handle only case of dimension 3 of insert_in_conflict from Triangulation_3 class.
    typename Triangulation::Locate_type lt;
    int li, lj;
    Cell_handle c = this->locate(p, lt, li, lj, start);
    typename Triangulation::Conflict_tester_3 tester(p, this);
    if ((lt == VERTEX) &&
        (tester.compare_weight(c->vertex(li)->point(), p)==0) ) {
      return c->vertex(li);
    }
    // If the new point is not in conflict with its cell, it is hidden.
    if (!tester.test_initial_cell(c)) {
      this->hidden_point_visitor.hide_point(c,p);
      return Vertex_handle();
    }

    // Ok, we really insert the point now.
    // First, find the conflict region.
    std::vector<Cell_handle> cells;
    std::vector<Facet> facets_on_the_boundary_of_the_hole;
    
    cells.reserve(32);
    this->find_conflicts
      (c, tester, make_triple(std::back_inserter(facets_on_the_boundary_of_the_hole),
                              std::back_inserter(cells),
                              Emptyset_iterator()));

    Facet facet=*boost::prior(facets_on_the_boundary_of_the_hole.end());
    
    // Remember the points that are hidden by the conflicting cells,
    // as they will be deleted during the insertion.
    this->hidden_point_visitor.process_cells_in_conflict(cells.begin(), cells.end());


  //Before insertion:
    //recover edges on the boundary of the hole.
    std::set<Edge,Compare_edge> hole_boundary_edges;
    const int indices[3]={1,2,3};
    for (typename std::vector<Facet>::iterator 
      it=facets_on_the_boundary_of_the_hole.begin();
      it!=facets_on_the_boundary_of_the_hole.end();
      ++it)
    {
      Facet f=it->first->tds_data().is_in_conflict()?this->mirror_facet(*it):*it;
      CGAL_precondition(!f.first->tds_data().is_in_conflict());
      for (int i=0;i<3;++i){
        Edge edge(f.first,(indices[i]+f.second)%4,(indices[(i+1)%3]+f.second)%4);
        if (!this->is_infinite(edge))
          hole_boundary_edges.insert(edge);
      }
    }
    // Erase from edge_status_map, edges that will disappear:
    // they are not on the boudary of the hole
    std::set<Edge,Compare_edge> hole_edges;
    std::pair<typename std::set<Edge,Compare_edge>::iterator,bool> it_hedge_and_not_already_seen;
    for (typename std::vector<Cell_handle>::iterator it=cells.begin();it!=cells.end();++it){
      for (int i=0;i<3;++i)
        for (int k=i+1;k<4;++k)
        {
          Edge edge(*it,i,k);
          if (this->is_infinite(edge) || hole_boundary_edges.find(edge)!=hole_boundary_edges.end() ) continue;
          it_hedge_and_not_already_seen=hole_edges.insert(edge);
          if (!it_hedge_and_not_already_seen.second){
            edge_status_map.erase(make_vertex_handle_pair(*(it_hedge_and_not_already_seen.first))); //for infinite edges it does nothing
          }
        }
    }

  //Insertion using base triangulation
    Vertex_handle v = this->_insert_in_hole(p, cells.begin(), cells.end(),
                                            facet.first, facet.second);

  //After insertion
    //--set classification of new cells and facets that were on the boundary of the hole
    cells.clear();
    this->finite_incident_cells(v,std::back_inserter(cells));
    for (typename std::vector<Cell_handle>::iterator it=cells.begin();it!=cells.end();++it){
      set_cell_status(*it); //set cell status
      set_facet_classification_type( Facet( (*it),(*it)->index(v) ) ); //set facet status (incident to one cell of the hole)
    }
    //--set classification of new facets
    std::vector<Facet> facets;
    this->finite_incident_facets(v,std::back_inserter(facets));
    for (typename std::vector<Facet>::iterator fit=facets.begin();fit!=facets.end();++fit)
      set_facet_classification_type(*fit);
    //--init classif of new vertex
    v->set_classification_type(SINGULAR);
    std::vector<Edge> edges;
    this->finite_incident_edges(v,std::back_inserter(edges));
    //--set status of new edges + update status of new vertex
    for (typename std::vector<Edge>::iterator eit=edges.begin();eit!=edges.end();++eit){
      Classification_type status=compute_edge_status(eit->first, eit->second, eit->third);
      Vertex_handle_pair vhp = make_vertex_handle_pair( *eit );
      CGAL_precondition( edge_status_map.find(vhp)==edge_status_map.end() );
      edge_status_map.insert(std::make_pair(vhp, status));
      update_vertex_status(v,status);
    }
    //--set final status of new vertex
    Cell_handle tmp;
    int itmp1,itmp2;
    v->is_on_chull( this->is_edge(this->infinite_vertex(),v,tmp,itmp1,itmp2) );
    finalize_status_of_vertex(v);
    
    //--set classification of old edges
    for (typename std::set<Edge,Compare_edge>::iterator  
         eit=hole_boundary_edges.begin();eit!=hole_boundary_edges.end();++eit)
    {
      CGAL_precondition (!this->is_infinite(*eit));
      Classification_type status=compute_edge_status(eit->first, eit->second, eit->third);
      Vertex_handle_pair vhp = make_vertex_handle_pair( *eit );
      typename Edge_status_map::iterator it_status=edge_status_map.find(vhp);
      CGAL_precondition(it_status!=edge_status_map.end());
      it_status->second = status;
    }
    
    //--set status of old vertices + update is_on_chull
    //TODO: find a better way to do it : make an update
    std::vector<Vertex_handle> vertices;
    this->finite_adjacent_vertices(v,std::back_inserter(vertices));
    for (typename std::vector<Vertex_handle>::iterator vit=vertices.begin();vit!=vertices.end();++vit){
      if ( (*vit)->is_on_chull() )
      {
        (*vit)->is_on_chull( this->is_edge(this->infinite_vertex(),(*vit),tmp,itmp1,itmp2) );
      }
      set_vertex_status(*vit);
    }
    
    // Store the hidden points in their new cells.
    this->hidden_point_visitor.reinsert_vertices(v);
    return v;
  }
  
  void remove (Vertex_handle vertex_to_remove)
  {
    CGAL_precondition(vertex_to_remove!=Vertex_handle());
    CGAL_precondition(vertex_to_remove!=this->infinite_vertex());
    
    std::vector<Facet> link;
    std::vector<Vertex_handle> vertices_to_update;    
    std::map<Vertex_handle,Classification_type> old_classification;
    
    if (this->dimension() == 3)
    {
      //recover facet of the link: they are bounding
      //the hole made when removing the vertex
      std::vector<Cell_handle> incident_cells;
      this->finite_incident_cells(vertex_to_remove,std::back_inserter(incident_cells));
      for (typename std::vector<Cell_handle>::iterator it=
          incident_cells.begin();it!=incident_cells.end();++it)
      {
        int index=(*it)->index(vertex_to_remove);
        link.push_back( this->mirror_facet(Facet(*it,index)) );
        CGAL_assertion (!this->is_infinite(link.back()));
      }

      //get vertices that will need to be updated
      this->finite_adjacent_vertices(vertex_to_remove,std::back_inserter(vertices_to_update));
      
      //1-erase removed edges from edge_map
      //2-store old classification of vertices and set it to SINGULAR
      for(typename std::vector<Vertex_handle>::iterator it=vertices_to_update.begin();it!=vertices_to_update.end();++it){
        CGAL_precondition(edge_status_map.find(make_vertex_handle_pair(*it,vertex_to_remove)) != edge_status_map.end());
        edge_status_map.erase(make_vertex_handle_pair(*it,vertex_to_remove));
        old_classification.insert(std::make_pair(*it,(*it)->get_classification_type()));
        (*it)->set_classification_type(SINGULAR);
      }
    }
   
    //Do remove the vertex from the underlying triangulation
    Dt tmp;
    typename Dt:: template Vertex_remover<Dt> remover(tmp);
    typedef CGAL::Triangulation_3<typename Dt::Geom_traits,typename Dt::Triangulation_data_structure> Tr_Base;
    Tr_Base::remove(vertex_to_remove,remover);
    
    if (this->dimension()<3){
      edge_status_map.clear();
      return;
    }
    
    //recover new cells
    std::set<Cell_handle> new_cells;//cells in the hole
    std::set<Cell_handle> outer;//cells that are not in the hole
    std::queue<Cell_handle> to_visit;
    for (typename std::vector<Facet>::iterator it=link.begin();it!=link.end();++it){
      Facet mirror_facet=this->mirror_facet(*it);
      if ( !this->is_infinite(mirror_facet.first) )
      {
        to_visit.push( mirror_facet.first );
        outer.insert(it->first);
      }
    }
    
    while (!to_visit.empty()){
      Cell_handle cell=to_visit.front();
      to_visit.pop();
      if ( !new_cells.insert(cell).second ) continue; //already explored
      //explore neighbor cells
      for (int i=0;i<4;++i){
        Cell_handle candidate=cell->neighbor(i);
        if ( !this->is_infinite(candidate) && outer.find(candidate)==outer.end())
          to_visit.push(candidate);
      }
    }
    
    //set status of new cells
    for (typename std::set<Cell_handle>::iterator it=new_cells.begin();it!=new_cells.end();++it){
      CGAL_precondition(!this->is_infinite(*it));
      set_cell_status(*it);
    }
    
    //recover new facets + link facets
    //set vertex that are on the convex hull (those on a facet incident to infinite cell)
    while (!new_cells.empty())
    {
      Cell_handle cell=*new_cells.begin();
      new_cells.erase(new_cells.begin());
      for (int i=0;i<4;++i){
        if ( new_cells.find(cell->neighbor(i)) != new_cells.end() )
          link.push_back(Facet(cell,i));
        else{
          if ( this->is_infinite( cell->neighbor(i) ) ){
            link.push_back(Facet(cell,i));
            cell->vertex((i+1)%4)->is_on_chull(true);
            cell->vertex((i+2)%4)->is_on_chull(true);
            cell->vertex((i+3)%4)->is_on_chull(true);
          }
        }
      }
    }
    
    std::set<Edge,Compare_edge> new_edges;
    //1- set status of these facets
    //2- recover new edges + edges incident to link facets
    const int index[3]={1,2,3};
    for (typename std::vector<Facet>::iterator it=link.begin();it!=link.end();++it){
      set_facet_classification_type(*it);
      for (int i=0;i<3;++i){
        new_edges.insert(Edge(it->first,(it->second+index[i])%4,(it->second+index[(i+1)%3])%4));
      }
    }
   
    //set status of these edges
    for(typename std::set<Edge,Compare_edge>::iterator it=new_edges.begin();it!=new_edges.end();++it){
      Classification_type status=compute_edge_status(it->first, it->second, it->third);
      //cross links
      Vertex_handle_pair vhp = make_vertex_handle_pair( *it );
      edge_status_map[vhp]=status;
    
      //update status of incident vertices
      update_vertex_status(it->first->vertex(it->second),status);
      update_vertex_status(it->first->vertex(it->third),status);
    }
    
    //set final status of vertices
    for(typename std::vector<Vertex_handle>::iterator it=vertices_to_update.begin();it!=vertices_to_update.end();++it){
      //this one is working but should be more expensive
      //set_vertex_status(*it);      continue;
      
      Classification_type old_status=old_classification[*it];
      Classification_type status=(*it)->get_classification_type();
      
      CGAL_precondition( status!=SINGULAR ); // at least on edge is incident to that vertex
      
      if (status==INTERIOR){
        if (old_status!=INTERIOR || (*it)->is_on_chull())
          (*it)->set_classification_type(REGULAR);
        else
          (*it)->set_classification_type(INTERIOR);
        continue;
      }
      
      if (status==REGULAR) continue;

      if ( status==EXTERIOR && ( old_status==REGULAR || old_status==INTERIOR) ){ //if vertex was EXTERIOR or SINGULAR other edges are not in the alpha complex
        //check if former REGULAR vertex becomes EXTERIOR or SINGULAR
        std::list<Vertex_handle> incidentv;
        finite_adjacent_vertices(*it,back_inserter(incidentv));
        
        typename std::list<Vertex_handle>::iterator vvit=incidentv.begin();
        for( ; vvit != incidentv.end(); ++vvit) {
            //TODO: We take all edges -> WE SHOULD ONLY TAKE THOSE NOT IN THE HOLE
            Vertex_handle_pair vhp = make_vertex_handle_pair( *vvit, *it);
            CGAL_assertion(edge_status_map.find(vhp)!=edge_status_map.end());
            Classification_type status=edge_status_map[vhp];
            if (status!=EXTERIOR){
              (*it)->set_classification_type(REGULAR);
              break;
            }
        }
        
        if ( vvit != incidentv.end() ) continue;
      }
      
      if ( is_vertex_Gabriel((*it),Weighted_tag()) && is_gabriel_simplex_in_alpha_complex((*it)) )
        (*it)->set_classification_type(SINGULAR);
      else
        (*it)->set_classification_type(EXTERIOR);
    }
    
    //Insert possible hidden points
    internal::Hidden_inserter<Fixed_alpha_shape_3<Dt>,Weighted_tag>::insert(*this,remover);
  }
  
  
  
private:

  typedef internal::Simplex_classif_predicate<Fixed_alpha_shape_3<Dt>,Weighted_tag> Simplex_classif;


//data members
  NT _alpha; //the value of alpha
  Edge_status_map edge_status_map; //the map containing the status of edges


  //------------------------- CONSTRUCTORS ------------------------------
public:
  Fixed_alpha_shape_3(NT alpha=0):_alpha(alpha){} 

  Fixed_alpha_shape_3(Dt& dt, NT alpha = 0):_alpha(alpha){
    Dt::swap(dt);
    if (dimension() == 3) initialize_alpha();
  }
 
  // Introduces an alpha-shape `A' for the alpha-value
  // `alpha' that is initialized with the points in the range
  // from first to last
  template < class InputIterator >  
  Fixed_alpha_shape_3(const InputIterator& first,  
                const InputIterator& last,  
                const NT& alpha = 0): _alpha(alpha)
  {
    Dt::insert(first, last);
    if (dimension() == 3)	  initialize_alpha();
  }
 
 
  
private :

  template < class InputIterator >  
  int make_alpha_shape(const InputIterator& first, 
		       const InputIterator& last)
  {
    clear();
    int n = Dt::insert(first, last);
    if (dimension() == 3)	  initialize_alpha();
    return n;
  }

  //--------------------- INITIALIZATION OF PRIVATE MEMBERS -----------
  void initialize_status_of_cells();
  void initialize_status_of_facets();
  void initialize_status_of_edges();
  void initialize_status_of_vertices();
  void finalize_status_of_vertex(Vertex_handle);
  void initialize_alpha() {
    //identify vertices on the convex hull
    std::vector<Vertex_handle> chull;
    incident_vertices(this->infinite_vertex(),std::back_inserter(chull));
    for ( typename std::vector<Vertex_handle>::iterator it=chull.begin();it!=chull.end();++it)
      (*it)->is_on_chull(true);
    
    initialize_status_of_cells();
    initialize_status_of_facets();
    initialize_status_of_edges();
    initialize_status_of_vertices();
  }

private :
  // prevent default copy constructor and default assigment
  Fixed_alpha_shape_3(const Fixed_alpha_shape_3&);
  void operator=(const Fixed_alpha_shape_3&);  

  static
  Vertex_handle_pair
  make_vertex_handle_pair( Vertex_handle v1, Vertex_handle v2) {
    return v1 < v2 ? std::make_pair(v1,v2)
                   : std::make_pair(v2,v1);
  }

  static
  Vertex_handle_pair
  make_vertex_handle_pair( const Edge& e) {
    return make_vertex_handle_pair(e.first->vertex(e.second),e.first->vertex(e.third));
  }
  
  struct Compare_edge{
    bool operator()(const Edge& e1,const Edge& e2) const
    {
      return make_vertex_handle_pair(e1)<make_vertex_handle_pair(e2);
    }
  };
  
  bool is_vertex_Gabriel(Vertex_handle,Tag_false){return true;}
  template <class Vertexhandle>
  bool is_vertex_Gabriel(Vertexhandle v,Tag_true){return is_Gabriel(v);}
  void update_vertex_status(Vertex_handle v,Classification_type edge_status);
  void set_facet_classification_type(const Facet& f);
  void set_vertex_status(Vertex_handle v);
  inline void set_cell_status (Cell_handle c);
  Classification_type compute_edge_status( const Cell_handle&  c,int i,int j) const;
  
  //---------------------------------------------------------------------

public:
  // Returns the current alpha-value.
  const NT&  get_alpha() const
  {
    return _alpha;
  }
  
  void clear()
  {
    // clears the structure
    Dt::clear();
    edge_status_map.clear();
  }
  
  //--------------------- PREDICATES -----------------------------------

public:
  Classification_type  classify(const Cell_handle& s) const  {
    if (is_infinite(s)) return EXTERIOR;
    return s->get_classification_type(); 
  }
  Classification_type  classify(const Facet& f) const {
    if (is_infinite(f)) return EXTERIOR;
    return f.first->get_facet_classification_type(f.second); 
  }
  Classification_type  classify(const Edge& e) const  {
    if (is_infinite(e)) return EXTERIOR;
    return edge_status_map.find(make_vertex_handle_pair(e))->second; 
  }
  Classification_type  classify(const Vertex_handle& v) const {
    if (is_infinite(v)) return EXTERIOR;
    return v->get_classification_type(); 
  }


//------------------- GEOMETRIC PRIMITIVES ----------------------------
private:
  bool
  is_gabriel_simplex_in_alpha_complex (const Cell_handle& s) const{
    return
      Simplex_classif::predicate(*this)(
          s->vertex(0)->point(),
          s->vertex(1)->point(),
          s->vertex(2)->point(),
          s->vertex(3)->point(),
          get_alpha()
      ) !=POSITIVE;
  }

  bool
  is_gabriel_simplex_in_alpha_complex (const Cell_handle& s, const int& i) const{
    return
      Simplex_classif::predicate(*this)(
          s->vertex(vertex_triple_index(i,0))->point(),
          s->vertex(vertex_triple_index(i,1))->point(),
          s->vertex(vertex_triple_index(i,2))->point(),
          get_alpha()
      ) != POSITIVE;
  }

  bool
  is_gabriel_simplex_in_alpha_complex (const Facet& f) {
    return is_gabriel_simplex_in_alpha_complex(f.first, f.second);
  }

  bool
  is_gabriel_simplex_in_alpha_complex (const Cell_handle& s, const int& i, const int& j) const  {
    return 
      Simplex_classif::predicate(*this)(
          s->vertex(i)->point(),
          s->vertex(j)->point(),
          get_alpha()
      ) !=POSITIVE;
  }

  bool
  is_gabriel_simplex_in_alpha_complex (const Edge& e) const {
    return is_gabriel_simplex_in_alpha_complex(e.first,e.second,e.third);
  }

  bool
  is_gabriel_simplex_in_alpha_complex (const Vertex_handle& v) const {
    return
      Simplex_classif::predicate(*this)(
          v->point(),
          get_alpha()
      ) !=POSITIVE;
  }

  //---------------------------------------------------------------------
public:  
#ifdef CGAL_USE_GEOMVIEW
  void show_alpha_shape_faces(Geomview_stream &gv) const;
#endif


  //Iterators

  //---------------------------------------------------------------------
  Alpha_shape_vertices_iterator alpha_shape_vertices_begin() const {
    return CGAL::filter_iterator(finite_vertices_end(),Exterior_simplex_test(this),finite_vertices_begin());}
  Alpha_shape_vertices_iterator alpha_shape_vertices_end() const   {
    return CGAL::filter_iterator(finite_vertices_end(),Exterior_simplex_test(this));}
  //---------------------------------------------------------------------
  Alpha_shape_facets_iterator alpha_shape_facets_begin() const{
    return CGAL::filter_iterator(finite_facets_end(),Exterior_simplex_test(this),finite_facets_begin());}
  Alpha_shape_facets_iterator alpha_shape_facets_end() const {
    return CGAL::filter_iterator(finite_facets_end(),Exterior_simplex_test(this));}
  //---------------------------------------------------------------------
  Alpha_shape_edges_iterator alpha_shape_edges_begin() const{
    return CGAL::filter_iterator(finite_edges_end(),Exterior_simplex_test(this),finite_edges_begin());}
  Alpha_shape_edges_iterator alpha_shape_edges_end() const {
    return CGAL::filter_iterator(finite_edges_end(),Exterior_simplex_test(this));}
  //---------------------------------------------------------------------
  Alpha_shape_cells_iterator alpha_shape_cells_begin() const {
    return CGAL::filter_iterator(finite_cells_end(),Exterior_simplex_test(this),finite_cells_begin());
  }
  Alpha_shape_cells_iterator alpha_shape_cells_end() const {
    return CGAL::filter_iterator(finite_cells_end(),Exterior_simplex_test(this));
  }
  //---------------------------------------------------------------------
  // To extract simplices given a classification type
  template<class OutputIterator>
  OutputIterator get_alpha_shape_cells(OutputIterator it, 
				       Classification_type type) const
  {
    Finite_cells_iterator cit = finite_cells_begin();
    for( ; cit != finite_cells_end() ; ++cit){
      if (classify(cit) == type) *it++ = Cell_handle(cit);
    }
    return it;
  }

  template<class OutputIterator>
  OutputIterator get_alpha_shape_facets(OutputIterator it, 
					Classification_type type) const
  {
    Finite_facets_iterator fit = finite_facets_begin();
    for( ; fit != finite_facets_end() ; ++fit){
      if (classify(*fit) == type) *it++ = *fit;
    }
    return it;
  }

  template<class OutputIterator>
  OutputIterator get_alpha_shape_edges(OutputIterator it, 
				       Classification_type type) const
  {
    Finite_edges_iterator eit = finite_edges_begin();
    for( ; eit != finite_edges_end() ; ++eit){
      if (classify(*eit) == type) *it++ = *eit;
    }
    return it;
  }

  template<class OutputIterator>
   OutputIterator get_alpha_shape_vertices(OutputIterator it, 
					   Classification_type type) const
  {
    Finite_vertices_iterator vit = finite_vertices_begin();
    for( ; vit != finite_vertices_end() ; ++vit){
      if (classify(vit) == type) *it++ = Vertex_handle(vit);
    }
    return it;
  }
  
};


template < class Dt >
const typename Fixed_alpha_shape_3<Dt>::Classification_type Fixed_alpha_shape_3<Dt>::EXTERIOR;
template < class Dt >
const typename Fixed_alpha_shape_3<Dt>::Classification_type Fixed_alpha_shape_3<Dt>::REGULAR;
template < class Dt >
const typename Fixed_alpha_shape_3<Dt>::Classification_type Fixed_alpha_shape_3<Dt>::INTERIOR;
template < class Dt >
const typename Fixed_alpha_shape_3<Dt>::Classification_type Fixed_alpha_shape_3<Dt>::SINGULAR;

//---------------------------------------------------------------------
//--------------------- MEMBER FUNCTIONS-------------------------------
//---------------------------------------------------------------------


//--------------------- INITIALIZATION OF PRIVATE MEMBERS -------------

template <class Dt>
void Fixed_alpha_shape_3<Dt>::set_cell_status(Cell_handle c){
  Classification_type status=is_infinite(c) ? EXTERIOR:( is_gabriel_simplex_in_alpha_complex(c) ? INTERIOR : EXTERIOR );
  c->set_classification_type(status);  
}

template <class Dt>
void 
Fixed_alpha_shape_3<Dt>::initialize_status_of_cells()
{ 
  Finite_cells_iterator cell_it, done = finite_cells_end();
  for( cell_it = finite_cells_begin(); cell_it != done; ++cell_it) {
    set_cell_status(cell_it);
  }
}


//---------------------------------------------------------------------

template < class Dt >
void
Fixed_alpha_shape_3<Dt>::
set_facet_classification_type( const Facet& f) {
  Cell_handle pCell = f.first;
  int i = f.second;
  Cell_handle pNeighbor = pCell->neighbor(i);
  int iNeigh = pNeighbor->index(pCell);

  unsigned nb_interior_cells=0;
  
  if(!is_infinite(pCell)){
    if (pCell->get_classification_type()==INTERIOR)
      ++nb_interior_cells;
  }
  
  if(!is_infinite(pNeighbor)){
    if (pNeighbor->get_classification_type()==INTERIOR)
      ++nb_interior_cells;
  }
  
  Classification_type status=EXTERIOR;
  switch (nb_interior_cells){
    case 2:
      status=INTERIOR;
    break;
    case 1:
      status=REGULAR;
    break;
    default:
    {
      if ( is_Gabriel(f) ){
        if ( is_gabriel_simplex_in_alpha_complex(f) )  status=SINGULAR;          
      }
    }
  }  
  pCell->set_facet_classification_type(i,status);
  pNeighbor->set_facet_classification_type(iNeigh,status);
}


template <class Dt>
void 
Fixed_alpha_shape_3<Dt>::initialize_status_of_facets()
{
  for(Finite_facets_iterator fit = finite_facets_begin();
      fit != finite_facets_end(); ++fit)   
        set_facet_classification_type(*fit);
}



template < class Dt >
typename Fixed_alpha_shape_3<Dt>::Classification_type
Fixed_alpha_shape_3<Dt>::
compute_edge_status( const Cell_handle& c, int i, int j) const
{
  Facet_circulator fcirc, done;
  fcirc = incident_facets(c,i,j);
  done = fcirc;
  
  bool is_regular=false;
  bool is_interior=true;
  do{
    if (!is_infinite(*fcirc)){
      Classification_type status=(*fcirc).first->get_facet_classification_type((*fcirc).second);
      if (status!=INTERIOR) is_interior=false;
      if (status!=EXTERIOR)
        is_regular=true;
      else
        if (is_regular)
          break;
    }
  }while(++fcirc!=done);
  if (is_interior) return INTERIOR;
  if (is_regular)  return REGULAR;
  
  if ( is_Gabriel(c,i,j) ){
    if ( is_gabriel_simplex_in_alpha_complex(c,i,j) )  return SINGULAR;
  }  
  return EXTERIOR;
}

template <class Dt>
void 
Fixed_alpha_shape_3<Dt>::initialize_status_of_edges()
{
  for (Finite_edges_iterator eit = finite_edges_begin(); 
       eit != finite_edges_end(); ++eit) 
  {
    Classification_type status=compute_edge_status(eit->first, eit->second, eit->third);
    //cross links
    Vertex_handle_pair vhp = make_vertex_handle_pair( *eit );
    edge_status_map.insert(std::make_pair(vhp, status));
  }
}


//this function is only to use for update (removal/update)
template <class Dt>
void 
Fixed_alpha_shape_3<Dt>::set_vertex_status(Vertex_handle v){
  std::list<Vertex_handle> incidentv;
  finite_adjacent_vertices(v,back_inserter(incidentv));
  
  bool is_interior=true;
  bool is_regular=false;
  typename std::list<Vertex_handle>::iterator vvit=incidentv.begin();
  for( ; vvit != incidentv.end(); ++vvit) {
      Vertex_handle_pair vhp = make_vertex_handle_pair( *vvit, v);
      Classification_type status=edge_status_map[vhp];
      if (status!=INTERIOR) is_interior=false;
      if (!is_interior && status!=EXTERIOR){
        is_regular=true;
        break;
      }
  }
  
  Classification_type status=EXTERIOR;
  if (is_interior)
    status=v->is_on_chull() ? REGULAR : INTERIOR;
  else{
    if (is_regular)
      status=REGULAR;
    else{
      if ( is_vertex_Gabriel(v,Weighted_tag()) ){
        if ( is_gabriel_simplex_in_alpha_complex(v) )        status=SINGULAR;
      }
    }
  }
  v->set_classification_type(status);
}
  
template <class Dt>
void 
Fixed_alpha_shape_3<Dt>::update_vertex_status(Vertex_handle v,Classification_type edge_status){
  Classification_type status=v->get_classification_type();
  switch(status){
    case SINGULAR:
      switch(edge_status){
        case INTERIOR: 
          status=INTERIOR;
        break;
        case EXTERIOR:
          status=EXTERIOR;
        break;
        case REGULAR:
        case SINGULAR:
          status=REGULAR;
      }
    break;
    case INTERIOR:
      switch(edge_status){
        case INTERIOR: 
        break;
        case EXTERIOR:
        case REGULAR:
        case SINGULAR:
          status=REGULAR;
      }
    break;      
    case EXTERIOR:      
      switch(edge_status){
        case EXTERIOR:
        break;
        case INTERIOR:
        case REGULAR:
        case SINGULAR:
          status=REGULAR;
      }
    break;
    case REGULAR:  
    break;
  }
  v->set_classification_type(status);
}

template <class Dt>
void 
Fixed_alpha_shape_3<Dt>::finalize_status_of_vertex(Vertex_handle v)
{
  Classification_type status=v->get_classification_type();
  if (v->is_on_chull() && status==INTERIOR){
    v->set_classification_type(REGULAR);
    return;
  }
  if (status==INTERIOR || status==REGULAR)
    return;
  
  //when dimension is 3 any vertex has at least one incident edge,
  // thus can't be SINGULAR again (because of update_vertex_status behavior)
  CGAL_assertion(v->get_classification_type()==EXTERIOR);
  
  if ( is_vertex_Gabriel(v,Weighted_tag()) && is_gabriel_simplex_in_alpha_complex(v) )
    v->set_classification_type(SINGULAR);
}

template <class Dt>
void 
Fixed_alpha_shape_3<Dt>::initialize_status_of_vertices()
{
  #if 1 //approach avoiding extensive use of the map on 3hfli we move from 0.110983 to 0.082987
  for( Finite_vertices_iterator vit = finite_vertices_begin(); vit != finite_vertices_end();	 ++vit) 
    vit->set_classification_type(SINGULAR);
  for (typename Edge_status_map::const_iterator eit=edge_status_map.begin();eit!=edge_status_map.end();++eit){
    Classification_type edge_status=eit->second;
    Vertex_handle_pair vhp=eit->first;
    update_vertex_status(vhp.first,edge_status);
    update_vertex_status(vhp.second,edge_status);
  }
  for( Finite_vertices_iterator vit = finite_vertices_begin(); vit != finite_vertices_end();	 ++vit)
    finalize_status_of_vertex(vit);
  #else
  //This method is slower because it always makes queries in the edge classification map
  for( Finite_vertices_iterator vit = finite_vertices_begin(); 
       vit != finite_vertices_end();	 ++vit) 
    set_vertex_status(vit);
  #endif
}

//---------------------------------------------------------------------

template <class Dt>
std::ostream& operator<<(std::ostream& os,  const Fixed_alpha_shape_3<Dt>& A)
  // Inserts the alpha shape into the stream `os' as an indexed face set. 
  // Precondition: The insert operator must be defined for `Point'
{
  typedef Fixed_alpha_shape_3<Dt>                  AS;
  typedef typename AS::Vertex_handle         Vertex_handle;
  typedef typename AS::Cell_handle           Cell_handle;
  typedef typename AS::Alpha_shape_vertices_iterator 
                                             Alpha_shape_vertices_iterator;
  typedef typename AS::Alpha_shape_facets_iterator
                                             Alpha_shape_facets_iterator;

  Unique_hash_map< Vertex_handle, int > V;
  int number_of_vertices = 0;

  Alpha_shape_vertices_iterator vit;
  for( vit = A.alpha_shape_vertices_begin();
       vit != A.alpha_shape_vertices_end();
       ++vit) {
    V[*vit] = number_of_vertices++;
    os << (*vit)->point() << std::endl;
  }

  Cell_handle c;
  int i;
  Alpha_shape_facets_iterator fit;
  for( fit = A.alpha_shape_facets_begin();
       fit != A.alpha_shape_facets_end();
       ++fit) {
    c = fit->first;
    i = fit->second;
    // the following ensures that regular facets are output
    // in ccw order
    if (A.classify(*fit) == AS::REGULAR && (A.classify(c) == AS::INTERIOR)){
      c = c->neighbor(i);
      i = c->index(fit->first);
    }
    int i0 = Triangulation_utils_3::vertex_triple_index(i,0);
    int i1 = Triangulation_utils_3::vertex_triple_index(i,1);
    int i2 = Triangulation_utils_3::vertex_triple_index(i,2);
    os << V[c->vertex(i0)] << ' ' 
       << V[c->vertex(i1)] << ' ' 
       << V[c->vertex(i2)] << std::endl;
  }
  return os;
}

} //namespace CGAL

#endif //CGAL_FIXED_ALPHA_SHAPE_3_H