1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
// Copyright (c) 2011 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Olivier Devillers
#ifndef CGAL_HILBERT_SORT_MIDDLE_d_H
#define CGAL_HILBERT_SORT_MIDDLE_d_H
#include <CGAL/basic.h>
#include <functional>
#include <cstddef>
#include <CGAL/Hilbert_sort_middle_base.h>
namespace CGAL {
namespace internal {
template <class K>
struct Fixed_hilbert_cmp_d
: public std::binary_function<typename K::Point_d,
typename K::Point_d, bool>
{
typedef typename K::Point_d Point;
K k;
int axe;
bool orient;
double value;
Fixed_hilbert_cmp_d (int a, bool o, double v, const K &_k = K())
: k(_k), axe(a), orient(o), value(v) {}
bool operator() (const Point &p) const
{
return (orient
? ( to_double( k.compute_coordinate_d_object() (p,axe) ) > value)
: ( to_double( k.compute_coordinate_d_object() (p,axe) ) <= value));
}
};
}
template <class K>
class Hilbert_sort_middle_d
{
public:
typedef K Kernel;
typedef typename Kernel::Point_d Point;
typedef std::vector< bool > Starting_position;
typedef std::vector< double > Corner;
private:
Kernel _k;
std::ptrdiff_t _limit;
mutable int _dimension;
mutable int two_to_dim;
struct Cmp : public internal::Fixed_hilbert_cmp_d<Kernel>
{ Cmp (int a, bool dir, double v, const Kernel &k)
: internal::Fixed_hilbert_cmp_d<Kernel> (a,dir,v,k) {} };
public:
Hilbert_sort_middle_d (const Kernel &k = Kernel(), std::ptrdiff_t limit = 1)
: _k(k), _limit (limit)
{}
template <class RandomAccessIterator>
void sort (RandomAccessIterator begin, RandomAccessIterator end,
Starting_position start, int direction,
Corner mini, Corner maxi) const
{
if (end - begin <= _limit) return;
Corner med(_dimension);
for( int i=0; i<_dimension; ++i) med[i]=(mini[i]+maxi[i])/2;
Corner cmin=mini,cmax=med;
std::vector<RandomAccessIterator> places(two_to_dim +1);
std::vector<int> dir (two_to_dim +1);
places[0]=begin;
places[two_to_dim]=end;
int last_dir = (direction + _dimension) % _dimension;
int current_dir = direction;
int current_level_step =two_to_dim;
do{
int half_step = current_level_step/2;
int left=0;
int middle = half_step;
int right=current_level_step;
bool orient = start[current_dir];
do{
dir[middle] = current_dir;
places[middle] = internal::fixed_hilbert_split
(places[left], places[right],
Cmp (current_dir,orient,med[current_dir],_k));
left =right;
right+=current_level_step;
middle+=current_level_step;
orient = ! orient;
}while( left< two_to_dim);
current_level_step = half_step;
current_dir = (current_dir +1) % _dimension;
}while (current_dir != last_dir);
/////////////start recursive calls
last_dir = (direction + _dimension -1) % _dimension;
// first step is special
sort( places[0], places[1], start, last_dir,cmin,cmax);
cmin[last_dir] = med[last_dir];
cmax[last_dir] = maxi[last_dir];
for(int i=1; i<two_to_dim-1; i +=2){
//std::cout<<i<<";"<<start[0]<<start[1]<<start[2]<<start[3]<<"/"<<dir[i+1]<<std::endl;
sort( places[i ], places[i+1], start, dir[i+1],cmin,cmax);
cmax[ dir[i+1] ] = (cmin[ dir[i+1]]==mini[ dir[i+1]])
? maxi[ dir[i+1] ] : mini[ dir[i+1] ];
cmin[ dir[i+1] ] = med[ dir[i+1] ];
sort( places[i+1], places[i+2], start, dir[i+1],cmin,cmax);
cmin[ dir[i+1] ] = cmax[ dir[i+1] ];
cmax[ dir[i+1] ] = med[ dir[i+1] ];
cmax[ last_dir ] = (cmax[last_dir]==maxi[last_dir])
? mini[ last_dir ] : maxi[ last_dir ];
start[dir[i+1]] = ! start[dir[i+1]];
start[last_dir] = ! start[last_dir];
}
//last step is special
sort( places[two_to_dim-1], places[two_to_dim], start, last_dir,cmin,cmax);
}
template <class RandomAccessIterator>
void operator() (RandomAccessIterator begin, RandomAccessIterator end) const
{
_dimension = _k.point_dimension_d_object()(*begin);
two_to_dim = 1;
Starting_position start(_dimension);
Corner mini(_dimension),maxi(_dimension);
for (int i=0; i<_dimension; ++i)
mini[i]=maxi[i]=to_double( _k.compute_coordinate_d_object() (*begin,i) );
for(RandomAccessIterator it=begin+1; it<end; ++it){
for (int i=0; i<_dimension; ++i){
double d= to_double( _k.compute_coordinate_d_object() (*it,i) );
if (d < mini[i]) mini[i] = d;
if (d > maxi[i]) maxi[i] = d;
}
}
for (int i=0; i<_dimension; ++i) {
start[i]=false; // we start below in all coordinates
two_to_dim *= 2; // compute 2^_dimension
if (two_to_dim*2 <= 0) {
CGAL_assertion(end-begin < two_to_dim);//too many points in such dim
break;
}
}
// we start with direction 0;
sort (begin, end, start, 0, mini, maxi);
}
};
} // namespace CGAL
#endif//CGAL_HILBERT_SORT_MIDDLE_d_H
|