File: VectorHd.h

package info (click to toggle)
cgal 4.0-5
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 65,068 kB
  • sloc: cpp: 500,870; ansic: 102,544; sh: 321; python: 92; makefile: 75; xml: 2
file content (423 lines) | stat: -rw-r--r-- 14,391 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
// Copyright (c) 2000,2001  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Kernel_d/include/CGAL/Kernel_d/VectorHd.h $
// $Id: VectorHd.h 67093 2012-01-13 11:22:39Z lrineau $
// 
//
// Author(s)     : Michael Seel

#ifndef CGAL_VECTORHD_H
#define CGAL_VECTORHD_H 

#include <CGAL/basic.h>
#include <CGAL/Quotient.h>
#include <CGAL/Kernel_d/Tuple_d.h> 
#include <CGAL/Kernel_d/PointHd.h>
#include <CGAL/Kernel_d/Aff_transformationHd.h>

namespace CGAL {
#define PointHd PointHd2

template <class RT, class LA> class VectorHd;
template <class RT, class LA>
std::istream& operator>>(std::istream&, VectorHd<RT,LA>&);
template <class RT, class LA>
std::ostream& operator<<(std::ostream&, const VectorHd<RT,LA>&);

/*{\Manpage {Vector_d}{R}{Vectors in d-space}{v}}*/
/*{\Msubst 
Hd<RT,LA>#_d<R>
VectorHd#Vector_d
PointHd#Point_d
Quotient<RT>#FT
}*/

template <class _RT, class _LA>
class VectorHd : public Handle_for< Tuple_d<_RT,_LA> > { 
  typedef Tuple_d<_RT,_LA>  Tuple;
  typedef Handle_for<Tuple> Base;
  typedef VectorHd<_RT,_LA> Self;

  using Base::ptr;
  using Base::copy_on_write;

/*{\Mdefinition
An instance of data type |\Mname| is a vector of Euclidean space in
dimension $d$. A vector $r = (r_0,\ldots,r_{ d - 1})$ can be represented
in homogeneous coordinates $(h_0,\ldots,h_d)$ of number type |RT|,
such that $r_i = h_i/h_d$ which is of type |FT|. We call the
$r_i$'s the Cartesian coordinates of the vector. The homogenizing
coordinate $h_d$ is positive.

This data type is meant for use in computational geometry. It realizes
free vectors as opposed to position vectors (type |PointHd|). The
main difference between position vectors and free vectors is their
behavior under affine transformations, e.g., free vectors are
invariant under translations.}*/

const typename _LA::Vector& vector_rep() const { return ptr()->v; }
_RT& entry(int i) { return ptr()->v[i]; }
const _RT& entry(int i) const { return ptr()->v[i]; }
void invert_rep() { ptr()->invert(); }
VectorHd(const Base& b) : Base(b) {}

public: 
/*{\Mtypes 4}*/

typedef _RT RT;
/*{\Mtypemember the ring type.}*/
typedef Quotient<_RT> FT;
/*{\Mtypemember the field type.}*/
typedef _LA LA;
/*{\Mtypemember the linear algebra layer.}*/
typedef typename Tuple::Cartesian_const_iterator Cartesian_const_iterator;
/*{\Mtypemember a read-only iterator for the Cartesian coordinates.}*/
typedef typename Tuple::const_iterator Homogeneous_const_iterator;
/*{\Mtypemember a read-only iterator for the homogeneous coordinates.}*/

class Base_vector {};
/*{\Mtypemember construction tag.}*/

friend class PointHd<RT,LA>; 
friend class DirectionHd<RT,LA>; 
friend class HyperplaneHd<RT,LA>; 

/*{\Mcreation 4}*/

VectorHd(int d = 0) : Base( Tuple(d+1) )  
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in 
$d$-dimensional space.}*/
{ if ( d > 0 ) entry(d) = 1; }

VectorHd(int d, Null_vector) : Base( Tuple(d+1) )  
/*{\Mcreate introduces the zero vector |\Mvar| of type |\Mname| in 
$d$-dimensional space. There is a constant |CGAL::NULL_VECTOR| that
can be used for the second argument.}*/
{ if ( d > 0 ) entry(d) = 1; }

template <class InputIterator>
VectorHd(int d, InputIterator first, InputIterator last) :
  Base( Tuple(d+1,first,last) )
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in dimension |d|.
If |size [first,last) == d| this creates a vector with Cartesian coordinates 
|set [first,last)|. If |size [first,last) == p+1| the range specifies the
homogeneous coordinates $|H = set [first,last)| = (\pm h_0, \pm h_1, \ldots,
\pm h_d)$ where the sign chosen is the sign of $h_d$.
\precond |d| is nonnegative, |[first,last)| has |d| or |d+1| elements where the
last has to be non-zero, and the value type of |InputIterator| is |RT|.}*/
{ RT D = entry(d);
  if ( D == RT(0) ) entry(d) = 1;
  if ( D < RT(0) ) invert_rep();
}

template <class InputIterator>
VectorHd(int d, InputIterator first, InputIterator last, 
         const RT& D) : Base( Tuple(d+1,first,last,D) )
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname|
in dimension |d| initialized to the vector with homogeneous 
coordinates as defined by |H = set [first,last)| and |D|:
$(\pm |H[0]|, \pm|H[1]|, \ldots, \pm|H[d-1]|, \pm|D|)$. The sign chosen 
is the sign of $D$. \precond |D| is non-zero, the iterator range defines 
a $d$-tuple of |RT|, and the value type of |InputIterator| is |RT|. }*/
{ CGAL_assertion_msg(D!=RT(0), "VectorHd::constructor: D must be nonzero.");
  if (D < RT(0)) invert_rep();
}

VectorHd(int d, Base_vector, int i) : Base( Tuple(d+1) )
/*{\Mcreate returns a variable |\Mvar| of type |\Mname| initialized  
to the $i$-th base vector of dimension $d$. }*/
{ entry(d) = 1;
  if ( d == 0 ) return;
  CGAL_assertion_msg((0<=i&&i<d),"VectorHd::base: index out of range.");
  entry(i) = 1;
}

VectorHd(const RT& x, const RT& y, const RT& w = 1) 
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in 
$2$-dimensional space. }*/
 : Base( Tuple(x,y,w) ) 
{ CGAL_assertion_msg((w != 0), "VectorHd::construction: w == 0.");
  if (w < 0) invert_rep();
}

VectorHd(int a, int b, int c = 1) : 
  Base( Tuple((RT)a,(RT)b,(RT)c, MatchHelper()) ) 
{ CGAL_assertion_msg((c != 0), "VectorHd::construction: w == 0.");
  if (c < 0) invert_rep();
}

VectorHd(const RT& x, const RT& y, const RT& z, const RT& w) 
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in 
$3$-dimensional space. }*/
  : Base( Tuple((RT)x,(RT)y,(RT)z,(RT)w) )
{ CGAL_assertion_msg((w!=0), "VectorHd::construction: w == 0.");
  if (w < 0) invert_rep();
}

VectorHd(int a, int b, int c, int d) :
  Base( Tuple((RT)a,(RT)b,(RT)c,(RT)d) )
{ CGAL_assertion_msg((d!=0), "VectorHd::construction: w == 0.");
  if (d < 0) invert_rep();
}

VectorHd(const VectorHd<RT,LA>& p) : Base(p)  {}
~VectorHd() {}     

/*{\Moperations 5 3 }*/

int dimension() const { return ptr()->size()-1; } 
/*{\Mop returns the dimension of |\Mvar|. }*/ 

Quotient<RT> cartesian(int i) const 
/*{\Mop returns the $i$-th Cartesian coordinate of |\Mvar|. 
   \precond $0 \leq i < d$.}*/
{ CGAL_assertion_msg((0<=i && i<(dimension())), "VectorHd::cartesian():\
  index out of range.");
  return Quotient<RT>(entry(i), entry(dimension())); 
}

Quotient<RT> operator[](int i) const { return cartesian(i); }
/*{\Marrop returns the $i$-th Cartesian coordinate of |\Mvar|.
   \precond $0 \leq i < d$.}*/

RT homogeneous(int i) const 
/*{\Mop returns the $i$-th homogeneous coordinate of |\Mvar|. 
   \precond $0 \leq i \leq d$.}*/
{ CGAL_assertion_msg((0<=i && i<=(dimension())), "VectorHd::homogeneous():\
  index out of range.");
  return entry(i);
}

Quotient<RT> squared_length() const
/*{\Mop returns the square of the length of |\Mvar|. }*/
{ RT nom = 0; 
  for (int i = 0; i < dimension(); i++) 
    nom += CGAL_NTS square(homogeneous(i));
  RT denom = CGAL_NTS square(homogeneous(dimension()));
  return Quotient<RT>(nom,denom); 
}

Cartesian_const_iterator cartesian_begin() const 
/*{\Mop returns an iterator pointing to the zeroth Cartesian coordinate 
of |\Mvar|. }*/
{ return Cartesian_const_iterator(ptr()->begin(),ptr()->last()); }

Cartesian_const_iterator cartesian_end() const 
/*{\Mop returns an iterator pointing beyond the last Cartesian coordinate 
of |\Mvar|. }*/
{ return Cartesian_const_iterator(ptr()->last(),ptr()->last()); }

Homogeneous_const_iterator homogeneous_begin() const 
/*{\Mop returns an iterator pointing to the zeroth homogeneous coordinate 
of |\Mvar|. }*/
{ return ptr()->begin(); }

Homogeneous_const_iterator homogeneous_end() const 
/*{\Mop returns an iterator pointing beyond the last homogeneous
coordinate of |\Mvar|. }*/ 
{ return ptr()->end(); }

inline PointHd<RT,LA> to_point() const;

inline DirectionHd<RT,LA> direction() const; 
/*{\Mop returns the direction of |\Mvar|. }*/

VectorHd<RT,LA> transform(const Aff_transformationHd<RT,LA>& t) const; 
/*{\Mop returns $t(v)$. }*/
/*{\Mtext \headerline{Arithmetic Operators, Tests and IO}}*/

VectorHd<RT,LA> scale(const RT& m, const RT& n) const 
{ int d = dimension(); 
  VectorHd<RT,LA> result(d); 
  result.entry(d) = entry(d) * n; 
  for (int i = 0; i < d; i++) 
    result.entry(i) = entry(i) * m; 
  return result; 
}

void self_scale(const RT& m, const RT& n) 
{ int d = dimension(); 
  copy_on_write();
  entry(d) *= n; 
  for (int i = 0; i < d; i++) entry(i) *= m; 
}

VectorHd<RT,LA>& operator*=(const RT& n) 
/*{\Mbinop  multiplies all Cartesian coordinates by |n|.}*/
{ self_scale(n,1); return *this; }

VectorHd<RT,LA>& operator*=(int n) 
{ self_scale(n,1); return *this; }

VectorHd<RT,LA>& operator*=(const Quotient<RT>& r) 
/*{\Mbinop  multiplies all Cartesian coordinates by |r|.}*/
{ self_scale(r.numerator(),r.denominator()); return *this; }

VectorHd<RT,LA> operator/(int n) const
{ return scale(1,n); }

VectorHd<RT,LA> operator/(const RT& n) const
/*{\Mbinop returns the vector with Cartesian coordinates 
$v_i/n, 0 \leq i < d$.}*/
{ return scale(1,n); }

VectorHd<RT,LA> operator/(const Quotient<RT>& r) const
/*{\Mbinop returns the vector with Cartesian coordinates 
$v_i/r, 0 \leq i < d$.}*/
{ return scale(r.denominator(),r.numerator()); }

VectorHd<RT,LA>& operator/=(const RT& n) 
{ self_scale(1,n); return *this; }
/*{\Mbinop divides all Cartesian coordinates by |n|.}*/

VectorHd<RT,LA>& operator/=(int n) 
{ self_scale(1,n); return *this; }

VectorHd<RT,LA>& operator/=(const Quotient<RT>& r) 
{ self_scale(r.denominator(),r.numerator()); return *this; }
/*{\Mbinop divides all Cartesian coordinates by |r|.}*/

Quotient<RT> 
operator* (const VectorHd<RT,LA>& w) const
/*{\Mbinop inner product, i.e., $\sum_{ 0 \le i < d } v_i w_i$, 
where $v_i$ and $w_i$ are the Cartesian coordinates of $v$ and $w$ 
respectively. }*/
{ int d = dimension(); 
  CGAL_assertion_msg((d==w.dimension()),
    "inner product: dimensions disagree."); 
  RT nom = 0; 
  for (int i = 0; i < d; i++) 
    nom += homogeneous(i) * w.homogeneous(i); 
  RT denom = homogeneous(d) * w.homogeneous(d); 
  return Quotient<RT>(nom,denom); 
}

VectorHd<RT,LA> operator+(const VectorHd<RT,LA>& w) const 
/*{\Mbinop returns the vector with Cartesian coordinates 
$v_i+w_i, 0 \leq i < d$.}*/
{ VectorHd<RT,LA> res(dimension()); 
  res.ptr()->homogeneous_add(ptr(), w.ptr()); 
  return res; 
}

VectorHd<RT,LA>& operator+=(const VectorHd<RT,LA>& w) 
/*{\Mbinop addition plus assignment.}*/
{ int d = dimension(); 
  VectorHd<RT,LA> old(*this); 
  *this = VectorHd<RT,LA>(d); 
  ptr()->homogeneous_add(old.ptr(), w.ptr()); 
  return *this; 
}

VectorHd<RT,LA> operator-(const VectorHd<RT,LA>& w) const 
/*{\Mbinop returns the vector with Cartesian coordinates 
$v_i-w_i, 0 \leq i < d$.}*/
{ VectorHd<RT,LA> res(dimension()); 
  res.ptr()->homogeneous_sub(ptr(), w.ptr()); 
  return res; 
}

VectorHd<RT,LA>& operator-=(const VectorHd<RT,LA>& w) 
/*{\Mbinop subtraction plus assignment.}*/
{ int d = dimension(); 
  VectorHd<RT,LA> old(*this); 
  *this = VectorHd<RT,LA>(d); 
  ptr()->homogeneous_sub(old.ptr(), w.ptr()); 
  return *this; 
}

VectorHd<RT,LA> operator-() const 
/*{\Munop returns the vector in opposite direction.}*/
{ VectorHd<RT,LA> result(*this); 
  result.copy_on_write(); // creates a copied object!
  result.ptr()->invert(dimension()); 
  return result; 
}

static Comparison_result cmp(
  const VectorHd<RT,LA>& x, const VectorHd<RT,LA>& y) 
{ Compare_homogeneously<RT,LA> cmpobj;
  return cmpobj(x.vector_rep(),y.vector_rep());
}

bool operator==(const VectorHd<RT,LA>& w) const
{ if ( this->identical(w) ) return true;
  if ( dimension() != w.dimension() ) return false;
  return cmp(*this,w) == EQUAL; 
}

bool operator!=(const VectorHd<RT,LA>& w) const
{ return !operator==(w); }

bool  is_zero() const
/*{\Mop returns true if |\Mvar| is the zero vector. }*/
{ for (int i = 0; i < dimension(); i++)
    if  ( homogeneous(i) != RT(0) ) return false;
  return true;
}

/*{\Mtext \headerline{Downward compatibility}
We provide all operations of the lower dimensional interface |x()|, |y()|,
|z()|, |hx()|, |hy()|, |hz()|, |hw()|.}*/
RT hx() const { return homogeneous(0); }
RT hy() const { return homogeneous(1); }
RT hz() const { return homogeneous(2); }
RT hw() const { return homogeneous(dimension()); }
Quotient<RT> x()  const { return Quotient<RT>(hx(),hw());}
Quotient<RT> y()  const { return Quotient<RT>(hy(),hw());}
Quotient<RT> z()  const { return Quotient<RT>(hz(),hw());}

friend std::istream& operator>> <> 
  (std::istream& I, VectorHd<RT,LA>& v);
friend std::ostream& operator<< <> 
  (std::ostream& O, const VectorHd<RT,LA>& v);

}; // end of class VectorHd


template <class RT, class LA>
VectorHd<RT,LA> operator*(const int& n, const VectorHd<RT,LA>& v) 
{ return v.scale(n,1); }

template <class RT, class LA>
VectorHd<RT,LA> operator*(const RT& n, const VectorHd<RT,LA>& v) 
/*{\Mbinopfunc returns the vector with Cartesian coordinates $n v_i$.}*/
{ return v.scale(n,1); }

template <class RT, class LA>
VectorHd<RT,LA> operator*(const Quotient<RT>& r, const VectorHd<RT,LA>& v)
/*{\Mbinopfunc returns the vector with Cartesian coordinates 
$r v_i, 0 \leq i < d$.}*/
{ return v.scale(r.numerator(),r.denominator()); }


/*{\Mimplementation 
Vectors are implemented by arrays of variables of type |RT|.  All
operations like creation, initialization, tests, vector arithmetic,
input and output on a vector $v$ take time $O(|v.dimension()|)$. 
coordinate access, |dimension()| and conversions
take constant time.  The space requirement of a vector is
$O(|v.dimension()|)$.}*/



#undef PointHd
} //namespace CGAL
#endif // CGAL_VECTORHD_H 
//----------------------- end of file ----------------------------------