1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
// Copyright (c) 1997-2000
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Kernel_d/include/CGAL/Kernel_d/Vector__.h $
// $Id: Vector__.h 67093 2012-01-13 11:22:39Z lrineau $
//
//
// Author(s) : Michael Seel <seel@mpi-sb.mpg.de>
#ifndef CGAL_VECTOR___H
#define CGAL_VECTOR___H
#include <CGAL/basic.h>
#include <CGAL/memory.h>
#include <CGAL/Kernel_d/debug.h>
#include <cmath>
#include <memory>
#include <new>
#include <iostream>
#include <vector>
#include <iterator>
namespace CGAL {
namespace Linear_Algebra {
template <class NT_, class AL_> class Vector_;
template <class NT_, class AL_> class Matrix_;
/*{\Msubst
<NT_,AL_>#
<NT,AL>#
Vector_#Vector
Matrix_#Matrix
}*/
/*{\Moptions print_title=yes}*/
/*{\Moptions outfile=Vector.man}*/
/*{\Xtext \headerline{Common Notation}
The following data types use the concept of iterator ranges as an
abstraction of tuples and sets. For an iterator range |[first,last)|
we define |S = set [first,last)| as the ordered tuple $(|S[0]|,|S[1]|,
\ldots |S[d-1]|)$ where $|S[i]| = |*| |++|^{(i)}|first|$ (the element
obtained by forwarding the iterator by operator |++| $i$ times and
then dereferencing it to get the value to which it points). We write
|d = size [first,last)|. This extends the syntax of random access
iterators to input iterators. If we index the tuple as above then we
require that $|++|^{(d)}|first == last|$ (note that |last| points
beyond the last element to be accepted).}*/
/*{\Manpage {Vector}{}{Vectors with NT Entries}{v}}*/
template <class NT_, class AL_>
class Vector_
{
/*{\Mdefinition An instance of data type |Vector_| is a vector of
variables of number type |NT|. Together with the type |Matrix_| it
realizes the basic operations of linear algebra.}*/
public:
/*{\Mtypes 5.5}*/
typedef NT_* pointer;
typedef const NT_* const_pointer;
typedef NT_ NT;
/*{\Mtypemember the ring type of the components.}*/
typedef pointer iterator;
/*{\Mtypemember the iterator type for accessing components.}*/
typedef const_pointer const_iterator;
/*{\Mtypemember the const iterator type for accessing components.}*/
typedef AL_ allocator_type;
/*{\Xtypemember the allocator type.}*/
protected:
friend class Matrix_<NT_,AL_>;
NT* v_; int d_;
static allocator_type MM;
inline void allocate_vec_space(NT*& vi, int di)
{
/* We use this procedure to allocate memory. We first get an appropriate
piece of memory from the allocator and then initialize each cell
by an inplace new. */
vi = MM.allocate(di);
NT* p = vi + di - 1;
while (p >= vi) { new (p) NT(0); p--; }
}
inline void deallocate_vec_space(NT*& vi, int di)
{
/* We use this procedure to deallocate memory. We have to free it by
the allocator scheme. We first call the destructor for type NT for each
cell of the array and then return the piece of memory to the memory
manager. */
NT* p = vi + di - 1;
while (p >= vi) { MM.destroy(p); p--; } //af: as proposed by sylvain
MM.deallocate(vi, di);
vi = (NT*)0;
}
inline void
check_dimensions(const Vector_<NT_,AL_>& vec) const
{
CGAL_assertion_msg((d_ == vec.d_),
"Vector_::check_dimensions: object dimensions disagree.");
}
public:
/*{\Mcreation v 3}*/
Vector_() : v_(0),d_(0) {}
/*{\Mcreate creates an instance |\Mvar| of type |\Mname|.}*/
Vector_(int d)
/*{\Mcreate creates an instance |\Mvar| of type |\Mname|.
|\Mvar| is initialized to a vector of dimension $d$.}*/
{ CGAL_assertion_msg( d >= 0 ,
"Vector_::constructor: negative dimension.");
d_ = d;
v_ = (NT*)0;
if (d_ > 0){
allocate_vec_space(v_,d_);
while (d--) v_[d] = NT(0);
}
}
Vector_(int d, const NT& x)
/*{\Mcreate creates an instance |\Mvar| of type |\Mname|.
|\Mvar| is initialized to a vector of dimension $d$ with entries |x|.}*/
{
CGAL_assertion_msg( d >= 0 ,
"Vector_::constructor: negative dimension.");
d_ = d; v_ = (NT*)0;
if (d_ > 0){
allocate_vec_space(v_,d_);
while (d--) v_[d] = x;
}
}
template <class Forward_iterator>
Vector_(Forward_iterator first, Forward_iterator last)
/*{\Mcreate creates an instance |\Mvar| of type |\Mname|;
|\Mvar| is initialized to the vector with entries
|set [first,last)|. \require |Forward_iterator| has value type |NT|.}*/
{
#if defined _MSC_VER && _MSC_VER == 1300
d_ = 0;
Forward_iterator fit = first;
while(fit++!=last) d_++;
#else
d_ = static_cast<int>(std::distance(first, last));
#endif
allocate_vec_space(v_,d_);
iterator it = begin();
while (first != last) { *it = *first; ++it; ++first; }
}
Vector_(const Vector_<NT_,AL_>& p)
{ d_ = p.d_;
if (d_ > 0) allocate_vec_space(v_,d_);
else v_ = (NT*)0;
for(int i=0; i<d_; i++) { v_[i] = p.v_[i]; }
}
Vector_<NT_,AL_>& operator=(const Vector_<NT_,AL_>& vec)
{
if (&vec == this)
return *this;
int n = vec.d_;
if (n != d_) {
if (d_ > 0) deallocate_vec_space(v_,d_);
d_=n;
if (n > 0) allocate_vec_space(v_,n);
else v_ = (NT*)0;
}
while (n--) v_[n] = vec.v_[n];
return *this;
}
~Vector_()
{ if (d_ > 0) deallocate_vec_space(v_,d_); }
/*{\Moperations 3 4}*/
int dimension() const { return d_; }
/*{\Mop returns the dimension of |\Mvar|.}*/
bool is_zero() const
/*{\Mop returns true iff |\Mvar| is the zero vector.}*/
{ for(int i=0; i<d_; ++i) if (v_[i]!=NT(0)) return false;
return true; }
NT& operator[](int i)
/*{\Marrop returns $i$-th component of |\Mvar|.\\
\precond $0\le i \le |v.dimension()-1|$. }*/
{ CGAL_assertion_msg((0<=i && i<d_),
"Vector_::operator[]: index out of range.");
return v_[i];
}
const NT& operator[](int i) const
{ CGAL_assertion_msg((0<=i && i<d_),
"Vector_::operator[]: index out of range.");
return v_[i];
}
iterator begin() { return v_; }
/*{\Mop iterator to the first component.}*/
iterator end() { return v_+d_; }
/*{\Mop iterator beyond the last component.}*/
/*{\Mtext The same operations |begin()|, |end()| exist for
|const_iterator|.}*/
const_iterator begin() const { return v_; }
const_iterator end() const { return v_+d_; }
Vector_<NT_,AL_> operator+(const Vector_<NT_,AL_>& v1) const;
/*{\Mbinop Addition. \precond\\ |v.dimension() == v1.dimension()|.}*/
Vector_<NT_,AL_> operator-(const Vector_<NT_,AL_>& v1) const;
/*{\Mbinop Subtraction. \precond\\ |v.dimension() = v1.dimension()|.}*/
NT operator*(const Vector_<NT_,AL_>& v1) const;
/*{\Mbinop Inner Product. \precond\\ |v.dimension() = v1.dimension()|.}*/
Vector_<NT_,AL_> compmul(const NT& r) const;
Vector_<NT_,AL_> operator-() const;
/*{\Munop Negation.}*/
Vector_<NT_,AL_>& operator+=(const Vector_<NT_,AL_>& v1);
/*{\Mbinop Addition plus assignment. \precond\\
|v.dimension() == v1.dimension()|.}*/
Vector_<NT_,AL_>& operator-=(const Vector_<NT_,AL_>& v1);
/*{\Mbinop Subtraction plus assignment. \precond\\ |v.dimension() == v1.dimension()|.}*/
Vector_<NT_,AL_>& operator*=(const NT& s);
/*{\Mbinop Scalar multiplication plus assignment.}*/
Vector_<NT_,AL_>& operator/=(const NT& s);
/*{\Mbinop Scalar division plus assignment.}*/
bool operator==(const Vector_<NT_,AL_>& w) const;
bool operator!=(const Vector_<NT_,AL_>& w) const
{ return !(*this == w); }
static int compare(const Vector_<NT_,AL_>&,
const Vector_<NT_,AL_>&);
};
template <class NT, class AL>
inline Vector_<NT,AL> operator*(const NT& r, const Vector_<NT,AL>& v)
/*{\Mbinopfunc Componentwise multiplication with number $r$.}*/
{ return v.compmul(r); }
template <class NT, class AL>
inline Vector_<NT,AL> operator*(const Vector_<NT,AL>& v, const NT& r)
/*{\Mbinopfunc Componentwise multiplication with number $r$.}*/
{ return v.compmul(r); }
template <class NT_, class AL_>
inline Vector_<NT_,AL_>& Vector_<NT_,AL_>::
operator+=(const Vector_<NT_,AL_>& vec)
{
check_dimensions(vec);
int n = d_;
while (n--) v_[n] += vec.v_[n];
return *this;
}
template <class NT_, class AL_>
inline Vector_<NT_,AL_>& Vector_<NT_,AL_>::
operator-=(const Vector_<NT_,AL_>& vec)
{
check_dimensions(vec);
int n = d_;
while (n--) v_[n] -= vec.v_[n];
return *this;
}
template <class NT_, class AL_>
inline Vector_<NT_,AL_>& Vector_<NT_,AL_>::
operator*=(const NT& s)
{ int n = d_;
while (n--) v_[n] *= s;
return *this;
}
template <class NT_, class AL_>
inline Vector_<NT_,AL_>& Vector_<NT_,AL_>::
operator/=(const NT& s)
{ int n = d_;
while (n--) v_[n] /= s;
return *this;
}
template <class NT_, class AL_>
inline Vector_<NT_,AL_> Vector_<NT_,AL_>::
operator+(const Vector_<NT_,AL_>& vec) const
{
check_dimensions(vec);
int n = d_;
Vector_<NT_,AL_> result(n);
while (n--) result.v_[n] = v_[n]+vec.v_[n];
return result;
}
template <class NT_, class AL_>
inline Vector_<NT_,AL_> Vector_<NT_,AL_>::
operator-(const Vector_<NT_,AL_>& vec) const
{
check_dimensions(vec);
int n = d_;
Vector_<NT_,AL_> result(n);
while (n--) result.v_[n] = v_[n]-vec.v_[n];
return result;
}
template <class NT_, class AL_>
inline Vector_<NT_,AL_> Vector_<NT_,AL_>::
operator-() const // unary minus
{
int n = d_;
Vector_<NT_,AL_> result(n);
while (n--) result.v_[n] = -v_[n];
return result;
}
template <class NT_, class AL_>
inline Vector_<NT_,AL_> Vector_<NT_,AL_>::
compmul(const NT& x) const
{
int n = d_;
Vector_<NT_,AL_> result(n);
while (n--) result.v_[n] = v_[n] * x;
return result;
}
template <class NT_, class AL_>
inline NT_ Vector_<NT_,AL_>::
operator*(const Vector_<NT_,AL_>& vec) const
{
check_dimensions(vec);
NT_ result=0;
int n = d_;
while (n--) result = result+v_[n]*vec.v_[n];
return result;
}
template <class NT_, class AL_>
inline bool Vector_<NT_,AL_>::
operator==(const Vector_<NT_,AL_>& vec) const
{ if (vec.d_ != d_) return false;
int i = 0;
while ((i<d_) && (v_[i]==vec.v_[i])) i++;
return (i==d_);
}
template <class NT_, class AL_>
int Vector_<NT_,AL_>::
compare(const Vector_<NT_,AL_>& v1, const Vector_<NT_,AL_>& v2)
{ int i;
v1.check_dimensions(v2);
for(i=0; i < v1.dimension() && v1[i]==v2[i]; i++) {}
if (i == v1.dimension()) return 0;
return (v1[i] < v2[i]) ? -1 : 1;
}
template <class NT_, class AL_>
std::ostream& operator<<(std::ostream& os, const Vector_<NT_,AL_>& v)
/*{\Xbinopfunc writes |\Mvar| componentwise to the output stream $O$.}*/
{ /* syntax: d x_0 x_1 ... x_d-1 */
int d = v.dimension();
switch (os.iword(CGAL::IO::mode)) {
case CGAL::IO::BINARY:
CGAL::write( os, d);
for ( int i = 0; i < d; ++i)
CGAL::write( os, v[i]);
break;
case CGAL::IO::ASCII:
os << d;
for ( int i = 0; i < d; ++i)
os << ' ' << v[i];
break;
case CGAL::IO::PRETTY:
os << "LA::Vector(" << d << " [";
for ( int i = 0; i < d; ++i) {
if ( i > 0)
os << ',' << ' ';
os << v[i];
}
os << "])";
break;
}
return os;
}
template <class NT_, class AL_>
std::istream& operator>>(std::istream& is, Vector_<NT_,AL_>& v)
/*{\Xbinopfunc reads |\Mvar| componentwise from the input stream $I$.}*/
{ /* syntax: d x_0 x_1 ... x_d-1 */
int d;
switch (is.iword(CGAL::IO::mode)) {
case CGAL::IO::ASCII :
case CGAL::IO::BINARY :
is >> d;
v = Vector_<NT_,AL_>(d);
for ( int i = 0; i < d; ++i) {
is >> v[i];
}
break;
default:
std::cerr<<"\nStream must be in ascii or binary mode"<<std::endl;
break;
}
return is;
}
template <class NT_, class AL_>
typename Vector_<NT_,AL_>::allocator_type Vector_<NT_,AL_>::MM;
/*{\Ximplementation Vectors are implemented by arrays of type
|NT|. All operations on a vector |v| take time $O(|v.dimension()|)$,
except for |dimension()| and $[\ ]$ which take constant time. The space
requirement is $O(|v.dimension()|)$. }*/
} // Linear_Algebra
} // CGAL
#endif // CGAL__VECTOR___H
|