1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
|
// Copyright (c) 2005 Stanford University (USA).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Kinetic_data_structures/include/CGAL/Kinetic/Two_list_pointer_event_queue.h $
// $Id: Two_list_pointer_event_queue.h 67093 2012-01-13 11:22:39Z lrineau $
//
//
// Author(s) : Daniel Russel <drussel@alumni.princeton.edu>
#ifndef CGAL_KINETIC_BIN_QUEUE_H
#define CGAL_KINETIC_BIN_QUEUE_H
#include <CGAL/Kinetic/basic.h>
#include <iostream>
#include <CGAL/Kinetic/internal/debug_counters.h>
#include <CGAL/In_place_list.h>
#include <functional>
#include <CGAL/assertions.h>
#include <iostream>
#include <CGAL/Kinetic/Ref_counted.h>
#include <CGAL/Kinetic/internal/infinity_or_max.h>
#include <algorithm>
#include <boost/utility.hpp>
#include <boost/type_traits/remove_const.hpp>
#include <CGAL/Kinetic/internal/debug_counters.h>
//int two_list_remaining=0;
//int growth__=0;
//int shrink__=0;
//int queue_insertions__=0;
//int queue_front_insertions__=0;
namespace CGAL { namespace Kinetic { namespace internal {
template <class Item>
struct Two_list_pointer_event_queue_key: public Item::Handle
{
typedef Two_list_pointer_event_queue_key<Item> This;
typedef typename Item::Handle P;
Two_list_pointer_event_queue_key(){};
Two_list_pointer_event_queue_key(Item *p): Item::Handle(p){}
std::ostream& write(std::ostream &out) {
if (Item::Handle::get()) {
out << "(" << Item::Handle::get() << ": " << *Item::Handle::get() << ")";
}
else {
out << "null";
}
return out;
}
/*operator bool() const
{
return Item::Handle::get() != NULL;
}*/
bool is_valid() const {
return Item::Handle::get() != NULL;
}
/*bool operator!() const
{
return Item::Handle::operator!();
}*/
bool operator==(const This &o) const
{
return Item::Handle::get() == o.get();
}
bool operator!=(const This &o) const
{
return Item::Handle::get() != o.get();
}
//using P::operator<;
bool operator<(const This& o) const
{
return P::get() < o.get();
}
Item* pointer() {
return Item::Handle::get();
}
const Item* pointer() const
{
return Item::Handle::get();
}
//using P::operator>;
};
template <class I>
std::ostream &operator<<(std::ostream &out, Two_list_pointer_event_queue_key<I> k)
{
k.write(out);
return out;
}
// The interface for an item stored in the ::Pointer_event_queue
template <class Priority>
class Two_list_event_queue_item:
public CGAL::In_place_list_base<Two_list_event_queue_item<Priority> >,
public Ref_counted<Two_list_event_queue_item<Priority> >
{
typedef Two_list_event_queue_item<Priority> This;
Two_list_event_queue_item(const Two_list_event_queue_item &o){}
void operator=(const Two_list_event_queue_item &o) {
}
public:
typedef Two_list_pointer_event_queue_key<This> Key;
Two_list_event_queue_item() { /*++two_list_remaining;*/}
Two_list_event_queue_item(const Priority &t): time_(t){/*++two_list_remaining;*/}
virtual ~Two_list_event_queue_item(){/*--two_list_remaining;*/
}
enum List {FRONT, BACK, INF};
const Priority& time() const {return time_;};
List in_list() const
{
return front_list_;
}
void set_in_list(List lt) {
front_list_=lt;
}
bool operator<(const This &o) const {
CGAL::Comparison_result c= CGAL::compare(time(), o.time());
if (c != CGAL::EQUAL) return c== CGAL::SMALLER;
else {
if (kds() < o.kds()) return true;
else if (kds() > o.kds()) return false;
else {
CGAL::Comparison_result c= compare_concurrent(Key((This*) this),Key((This*) &o));
return c==CGAL::SMALLER;
}
}
}
virtual std::ostream& write(std::ostream &out) const{
out << "Dummy event." << std::endl;
return out;
}
virtual void process() {
CGAL_error();
CGAL_ERROR("Writing dummy queue element.");
}
virtual CGAL::Comparison_result compare_concurrent(Key , Key ) const {
CGAL_error();
return CGAL::EQUAL;
};
virtual bool merge_concurrent(Key , Key ) {
CGAL_error();
return false;
}
virtual void *kds() const{return NULL;}
virtual void audit(Key) const{};
private:
Priority time_;
List front_list_;
};
template <class Priority>
inline std::ostream& operator<<(std::ostream &out, const Two_list_event_queue_item<Priority> &i)
{
i.write(out);
return out;
}
// The how a dummy item is stored in the ::Two_list_event_queue
/*
One dummy item is used to represent events which will never happen.
*/
/*template <class Priority>
class Two_list_event_queue_dummy_item: public Two_list_event_queue_item<Priority>
{
typedef Two_list_event_queue_item<Priority> P;
public:
Two_list_event_queue_dummy_item(){}
Two_list_event_queue_dummy_item(const Two_list_event_queue_dummy_item &):
Two_list_event_queue_item<Priority>(){}
virtual void process() {
std::cerr << "Trying to process a NULL event.\n";
CGAL_error();
}
virtual CGAL::Comparison_result compare_concurrent(typename P::Key , typename P::Key ) const{return CGAL::EQUAL;}
virtual bool merge_concurrent(typename P::Key, typename P::Key){
return false;
}
virtual std::ostream& write(std::ostream &out) const
{
out << "Never";
return out;
}
virtual ~Two_list_event_queue_dummy_item(){}
};*/
// The how a real item is stored in the ::Two_list_event_queue
/*
This just stores an object of type Event and passes the virtual calls on to it.
The object is reference counted so you don't have to worry about the
queue deleting it or not.
*/
template <class Priority, class Event>
class Two_list_event_queue_item_rep: public internal::Two_list_event_queue_item<Priority>
{
typedef Two_list_event_queue_item<Priority> P;
public:
Two_list_event_queue_item_rep(): internal::Two_list_event_queue_item<Priority>(){}
Two_list_event_queue_item_rep(const Priority &t, const Event &e):
Two_list_event_queue_item<Priority>(t),
event_(e){}
virtual std::ostream& write(std::ostream &out) const
{
event_.write(out);
out << " at " << P::time();
return out;
}
virtual void process() {
event_.process();
}
virtual void audit(typename P::Key k) const {
event_.audit(k);
}
virtual CGAL::Comparison_result compare_concurrent(typename P::Key a, typename P::Key b) const{
return event_.compare_concurrent(a,b);
}
virtual bool merge_concurrent(typename P::Key a, typename P::Key b){
return event_.merge_concurrent(a,b);;
}
virtual void *kds() const{return event_.kds();}
// Access the actual event
const Event &event() const
{
return event_;
}
// Access the actual event
Event &event()
{
return event_;
}
virtual ~Two_list_event_queue_item_rep(){}
protected:
Event event_;
};
/* This is needed since the list cannot allocate an element of the abstract base class. I could just make it non-abstract. Why not?*/
/*template <class T>
struct Two_list_event_queue_item_allocator
{
typedef Two_list_event_queue_dummy_item<T> dummy_value_type;
typedef Two_list_event_queue_item<T>* pointer;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef const pointer const_pointer;
typedef Two_list_event_queue_item<T>& reference;
typedef const Two_list_event_queue_item<T>& const_reference;
typedef dummy_value_type value_type;
Two_list_event_queue_item_allocator(){}
pointer allocate(size_t sz, void* =0) const
{
return static_cast<pointer>(::operator new(sz*sizeof(dummy_value_type)));
}
void deallocate(pointer p, size_type ) {
::operator delete(static_cast<void*>(p));
}
size_type max_size() const throw() {
return (std::numeric_limits<size_type>::max)()/sizeof(dummy_value_type);
}
template <class TT>
void construct(pointer p, const TT &) {
new(static_cast<void*>(p)) dummy_value_type();
}
void destroy(pointer p) {
p->~Two_list_event_queue_item<T>();
}
};*/
} } } //namespace CGAL::Kinetic::internal
namespace CGAL { namespace Kinetic {
//! The priority queue for holding many different types of events.
/*! This queue allows the priorities to be updated and for elements
to be removed. The events are stored behind an interface and
accessed through virtual functions allowing many different types of
events to be stored in the queue at once, as long as they all share
the same Priority.
Currently the items in the queue are refence counted. This imposes
some overhead, but makes accessing them much simpler since you don't
have to worry about them being processed (and deleted or not). I am
not sure which is better.
*/
template <class FK, bool INF=false, unsigned int TARGET=8>
class Two_list_pointer_event_queue
{
typedef typename FK::Root PriorityT;
typedef typename FK::FT NT;
typedef Two_list_pointer_event_queue<FK, INF, TARGET> This;
typedef typename internal::Two_list_event_queue_item<PriorityT> Item;
typedef typename CGAL::In_place_list<Item, false/*,
internal::Two_list_event_queue_item_allocator<PriorityT>*/ > Queue;
typedef typename Queue::iterator Iterator;
public:
typedef PriorityT Priority;
typedef internal::Two_list_pointer_event_queue_key<Item> Key;
//! Construct it with a suggested size of sz.
Two_list_pointer_event_queue(Priority start_time,
Priority end_time,
FK, int =0):
null_event_(new internal::Two_list_event_queue_item<Priority>()){
CGAL_precondition(!INF);
initialize(start_time, end_time);
}
//! Construct it with a suggested size of sz.
Two_list_pointer_event_queue(Priority start_time,
FK, int =0):
null_event_(new internal::Two_list_event_queue_item<Priority>()){
CGAL_precondition(INF);
initialize(start_time);
}
~Two_list_pointer_event_queue() {
// release pointers
std::vector<Key> all;
all.reserve(front_.size()+back_.size());
for (typename Queue::iterator it = front_.begin();
it != front_.end(); ++it) {
all.push_back(Key(&*it));
}
for (typename Queue::iterator it = back_.begin();
it != back_.end(); ++it) {
all.push_back(Key(&*it));
}
front_.clear();
back_.clear();
for (unsigned int i=0; i< all.size(); ++i) {
unmake_event(all[i].get());
}
}
/*template <class E>
Key insert_at_end(const E & e) {
}*/
bool is_after_end(const Priority &t) const {
if (INF) return false;
else return CGAL::compare(t,end_priority()) == CGAL::LARGER;
}
//! insert value_type into the queue and return a reference to it
/*!
The reference can be used to update or erase it.
*/
template <class E>
Key insert(const Priority &t, const E & e) {
CGAL_expensive_precondition(audit());
Item *ni = make_event(t, e);
//CGAL_exactness_assertion(t >= lbs_);
//lb_=(std::min)(t, lb_);
if ( is_after_end(ni->time())){
return end_key();
}
if (leq_ub(ni->time())) {
ni->set_in_list(Item::FRONT);
typename Queue::iterator iit=std::upper_bound(front_.begin(), front_.end(), *ni);
front_.insert(iit, *ni);
CGAL_expensive_assertion(audit());
if (front_.size() > 2*max_front_size()) {
shrink_front();
}
//++queue_front_insertions__;
} else if (front_.empty()) {
CGAL_assertion(back_.empty());
CGAL_assertion(INF || CGAL::compare(t, end_priority()) != CGAL::LARGER);
//CGAL_assertion(INF || CGAL::compare(end_priority(), std::numeric_limits<Priority>::infinity()) == CGAL::SMALLER);
if (true){
//++queue_front_insertions__;
front_.push_back(*ni);
ub_= CGAL::to_interval(t).second;
ni->set_in_list(Item::FRONT);
}
} else {
ni->set_in_list(Item::BACK);
back_.push_back(*ni);
}
CGAL_expensive_postcondition(audit());
CGAL_expensive_postcondition(contains(Key(ni)));
//std::cout << "Made event " << ni << std::endl;
return Key(ni);
}
//! remove the event referenced by item from the queue
/*!
\todo Add check that item is actually in the list
*/
void erase(const Key &item) {
//std::cout << "Erase event " << item.pointer() << std::endl;
if (item== end_key()) return;
#ifndef NDEBUG
if (!contains(item)) {
std::cerr << "Erasing event not in queue ";
item->write(std::cerr);
std::cerr << std::endl;
}
#endif
CGAL_expensive_precondition(contains(item));
CGAL_expensive_precondition(audit());
Item *i=item.get();
if (item->in_list() == Item::FRONT) {
front_.erase(i);
if (front_.empty() && !back_.empty()) grow_front();
}
else if (item->in_list() == Item::BACK) {
back_.erase(i);
}
if (item->in_list() == Item::FRONT || item->in_list() == Item::BACK) {
unmake_event(i);
}
CGAL_expensive_postcondition(audit());
}
template <class E>
const E& get(const Key &item) const
{
return reinterpret_cast<internal::Two_list_event_queue_item_rep<Priority, E>*>( item.get())->event();
}
template <class E>
E& get(const Key &item) {
return reinterpret_cast<internal::Two_list_event_queue_item_rep<Priority, E>*>( item.get())->event();
}
//! Replace the event referenced by item with a new event referenced by ne
/*! They must have exactly the same times associated with
them. This is checked when expensive checks are turned on.
*/
template <class NE>
Key set(const Key &item, const NE &ne) {
CGAL_expensive_precondition(contains(item));
CGAL_precondition(item != end_key());
Item *oi= item.get();
typename Item::List front= item->in_list();
Item *ni= make_event(item->time(), ne);
ni->set_in_list(front);
if (front != Item::INF) {
if (front== Item::FRONT) {
front_.insert(oi, *ni);
front_.erase(oi);
}
else {
back_.insert(oi, *ni);
back_.erase(oi);
}
unmake_event(oi);
return Key(ni);
}
else {
#ifndef NDEBUG
bool found=false;
for (unsigned int i=0; i< inf_.size(); ++i) {
if (inf_[i].get() == oi) {
inf_[i]=ni;
found=true;
break;
}
}
CGAL_postcondition(found);
#endif
unmake_event(oi);
return Key(ni);
}
// unreachable
}
//! Get the time of the next event to be processed.
/*! It is OK to call this if the queue is empty. In that case it
will just return infinity.
*/
const Priority& front_priority() const
{
CGAL_precondition(!front_.empty());
return front_.front().time();
}
Key front() const
{
CGAL_precondition(!front_.empty());
return Key(const_cast<Item*>(&front_.front()));
}
//! Access the time of a particular event
const Priority& priority(const Key &item) const
{
return item->time();
}
//! empty
bool empty() const
{
CGAL_precondition(!front_.empty() || back_.empty());
return front_.empty()
|| CGAL::compare(front_.front().time(), end_priority()) == CGAL::LARGER;
}
//! Remove the next event from the queue and process it.
/*!
Processing means that the process() method of the event object is called.
*/
void process_front() {
CGAL_precondition(!empty());
CGAL_expensive_precondition(audit());
if (!front_.empty()) {
Item *i= &front_.front();
CGAL_LOG(Log::SOME, "Processing event " << *i << std::endl);
front_.pop_front();
CGAL_expensive_postcondition(audit());
if (front_.empty() && !back_.empty()) grow_front();
i->process();
/*if (!front_.empty() && i->time() == front_.front().time()) {
CGAL_LOG(Log::SOME, "Degeneracy at time "
<< i->time() << " the events are: "
<< *i << " and " << front_.front() << std::endl);
}*/
unmake_event(i);
}
else {
CGAL_assertion(back_.empty());
}
}
//! debugging
bool print() const
{
write(std::cout);
return true;
}
void write(const Queue &q, std::ostream& out) const {
for (typename Queue::const_iterator it = q.begin(); it != q.end(); ++it) {
out << "(" << &*it << ": " << *it << ")";
out << std::endl;
}
}
bool write(std::ostream &out) const
{
write(front_, std::cout);
out << "--" << ub_ << "--" << std::endl;
write(back_, std::cout);
out << std::endl;
return true;
}
Key end_key() const
{
return null_event_;
}
const Priority& end_priority() const
{
return end_time_;
}
void set_interval(const Priority &start_time, const Priority &end_time) {
CGAL_precondition(!INF);
initialize(start_time, end_time);
}
void audit_events() const {
for (typename Queue::const_iterator it= front_.begin(); it != front_.end(); ++it) {
it->audit(Key(const_cast<Item*>(&*it)));
}
for (typename Queue::const_iterator it= back_.begin(); it != back_.end(); ++it) {
it->audit(Key(const_cast<Item*>(&*it)));
}
}
void audit_event(Key k) const {
k->audit(k);
}
void clear() {
front_.clear();
back_.clear();
//all_in_front_=false;
}
protected:
void initialize(const Priority &start_time, const Priority &end_time) {
ub_=CGAL::to_interval(start_time).second;
// should be nextafter
step_=1;
//all_in_front_= false;
end_time_=end_time;
}
void initialize(const Priority &start_time) {
CGAL_precondition(INF);
ub_=CGAL::to_interval(start_time).second;
// should be nextafter
step_=1;
//all_in_front_= false;
}
bool leq_ub(const Priority &t) const {
//if (all_in_front_) return true;
//else
// pretty much anything fast will have a fast to_interval, so use it
std::pair<double,double> iv= CGAL::to_interval(t);
if (iv.first > ub_) {
return false;
} else if (iv.second <= ub_) {
return true;
} else {
return CGAL::compare(t, Priority(ub_)) != CGAL::LARGER;
}
}
template <class E>
Item *make_event(const Priority &t, E &e) {
typedef typename boost::remove_const<E>::type NCE;
Item *ni
= new internal::Two_list_event_queue_item_rep<Priority, NCE>(t, e);
intrusive_ptr_add_ref(ni);
return ni;
}
void unmake_event(Item *i) {
intrusive_ptr_release(i);
}
bool audit() {
for (typename Queue::const_iterator it = front_.begin(); it != front_.end(); ++it) {
Priority t= it->time();
CGAL_assertion(leq_ub(t));
CGAL_assertion(it->in_list()== Item::FRONT);
//CGAL_exactness_assertion(t >= lb_);
}
for (typename Queue::const_iterator it = back_.begin(); it != back_.end(); ++it) {
Priority t= it->time();
CGAL_assertion(!leq_ub(t));
CGAL_assertion(it->in_list()== Item::BACK);
}
#ifndef NDEBUG
for (unsigned int i=0; i< inf_.size(); ++i) {
Priority t= inf_[i]->time();
CGAL_assertion(INF || CGAL::compare(t, end_priority())== CGAL::LARGER);
CGAL_assertion(inf_[i]->in_list() == Item::INF);
}
#endif
{
typename Queue::const_iterator it = front_.begin();
++it;
for (; it != front_.end(); ++it) {
Priority tc= it->time();
Priority tp= boost::prior(it)->time();
#ifndef NDEBUG
if (CGAL::compare(tc, tp) == CGAL::SMALLER) {
std::cout << "ERROR: Out of order " << tc << std::endl << tp << std::endl << std::endl;
++internal::audit_failures__;
}
#endif
//CGAL_assertion(tc >= tp);
}
}
return true;
}
public:
bool contains(const Key k) const
{
//if (k.pointer()->time() == std::numeric_limits<Priority>::infinity()) return true;
for (typename Queue::const_iterator it = front_.begin(); it != front_.end(); ++it) {
if (&*it == k.pointer()) return true;
}
for (typename Queue::const_iterator it = back_.begin(); it != back_.end(); ++it) {
if (&*it == k.pointer()) return true;
}
#ifndef NDEBUG
for (unsigned int i=0; i< inf_.size(); ++i) {
const Key j=inf_[i];
const Key ki= k;
if (j==ki) return true;
}
#else
if (k.pointer()->in_list() == Item::INF) return true;
#endif
return false;
}
protected:
unsigned int select(Queue &source, Queue &target/*, bool binf*/) {
CGAL_assertion_code(unsigned int sz= source.size() + target.size();)
int count=0;
Iterator it= source.begin();
while (it != source.end()) {
// CGAL_assertion(it->time() >= a);
if (leq_ub(it->time())) {
Item *i= &*it;
Iterator t= boost::next(it);
source.erase(it);
it=t;
target.push_back(*i);
++count;
}
else {
++it;
}
}
CGAL_assertion(sz==source.size() + target.size());
return count;
}
/*NT step() const{
return (std::max)(ub_-lb_, NT(1));
}*/
NT av(NT a, NT b) const
{
return .5*(a+b);
}
template <class It>
void set_front(It b, It e, typename Item::List val) {
for (; b!= e; ++b) {
b->set_in_list(val);
}
}
template <class C, class It>
void make_inf(C &c, It b, It e) {
for (It cit = b; cit != e; ++cit) {
CGAL_assertion(INF || CGAL::compare(cit->time(), end_priority()) == CGAL::LARGER);
//std::cout << "Dropping inf event " << &*cit << std::endl;
#ifndef NDEBUG
inf_.push_back(&*cit);
#endif
cit->set_in_list(Item::INF);
It p= boost::prior(cit);
c.erase(cit);
unmake_event(&*cit);
cit=p;
}
//c.erase(b, e);
}
void grow_front(Queue &cand, int recursive_count=0) {
const bool dprint=false;
CGAL_assertion(front_.empty());
CGAL_assertion(!cand.empty());
//CGAL_assertion(!all_in_front_);
CGAL_assertion(step_ != 0);
if (dprint) std::cout << "Growing front from " << ub_ << " with step "
<< step_ << "(" << recursive_count << ") ";
//CGAL_assertion(ub_<end_split());
if (cand.size() + front_.size() < max_front_size()) {
if (dprint) std::cout << "Setting ub to end of " << end_time_ << std::endl;
front_.splice(front_.end(), cand);
return;
}
//CGAL_assertion(!too_big(ub_));
/*if ( CGAL::compare(end_priority(), Priority(ub_)) == CGAL::SMALLER) {
all_in_front_=true;
//ub_=end_split();
}*/
CGAL_assertion_code(unsigned int num=)
select(cand, front_/*, all_in_front_*/);
CGAL_assertion(front_.size() >= num);
/*if (all_in_front_) {
make_inf(cand, cand.begin(), cand.end());
} else*/
if (front_.empty()) {
if (recursive_count > 10) {
// do something
std::cerr << "Too many recursions " << std::endl;
//all_in_front_=true;
ub_=CGAL::to_interval(end_time_).second; //CGAL::to_interval(end_time_).second*2;// std::numeric_limits<double>::infinity();
/*unsigned int num=*/ select(cand, front_/*, all_in_front_*/);
select(back_, front_);
make_inf(cand, cand.begin(), cand.end());
make_inf(back_, back_.begin(), back_.end());
//grow_front(cand, recursive_count+1);
} else {
if (dprint) {
std::cout << "undershot." << std::endl;
write(front_, std::cout);
std::cout << "-- " << ub_ << "--\n";
write(cand, std::cout);
std::cout << "--\n";
write(back_, std::cout);
}
ub_+= step_;
step_*=2.0;
CGAL_assertion(step_!=0);
cand.splice(cand.end(), back_);
grow_front(cand, recursive_count+1);
}
} else {
// unsigned int ncand= cand.size();
back_.splice(back_.begin(), cand);
if (front_.size() > max_front_size()) {
if (recursive_count > 10) {
//std::cerr << "Gave up on isolating front. Let with size " << front_.size() << " ub=" << ub_ << "step=" << step_ << "\n";
return;
} else {
// keep the bit length shortish
double frac= .75+.25*max_front_size()/static_cast<double>(front_.size()+1);
double ostep= step_;
CGAL_assertion(frac < 1.1);
CGAL_assertion(frac >= 0.0);
//double rfrac= std::ceil(frac*256.0)/256.0;
step_*=frac;
//else nstep = step_*.6;
//CGAL_assertion(nstep >0);
cand.swap(front_);
//ub_=lb_;
if (step_ == 0) {
CGAL_ERROR( "underflow in queue ");
CGAL_ERROR_WRITE(write(LOG_STREAM));
CGAL_assertion(cand.empty());
step_=.0000001;
return;
} else {
//CGAL_assertion(!all_in_front_);
if (dprint) {
std::cout << "...overshot" << std::endl;
write(front_, std::cout);
std::cout << "-- " << ub_ << "(" <<step_ << ")" << "--\n";
write(cand, std::cout);
std::cout << "--\n";
write(back_, std::cout);
}
ub_=ub_-ostep+step_;
grow_front(cand, recursive_count+1);
}
}
}
else {
if (dprint) std::cout << std::endl;
}
}
CGAL_postcondition(cand.empty());
}
void grow_front() {
//++growth__;
//std::cout << "Growing front from " << ub_ << std::endl;
//CGAL_assertion(is_valid());
CGAL_precondition(!back_.empty());
CGAL_precondition(front_.empty());
CGAL_assertion_code(unsigned int sz= front_.size()+back_.size()+ inf_.size());
Queue cand;
cand.splice(cand.begin(), back_);
ub_ += step_;
grow_front(cand);
set_front(front_.begin(), front_.end(), Item::FRONT);
front_.sort();
ub_= CGAL::to_interval(front_.back().time()).second;
// hmmmm, now I should make a second pass to merge. Ick.
CGAL_assertion(sz==front_.size()+back_.size() + inf_.size());
CGAL_assertion(audit());
//std::cout << "to " << ub_ << std::endl;
}
void shrink_front() {
//++shrink__;
//std::cout << "Shrinking front from " << ub_ << std::endl;
typename Queue::iterator it=front_.begin();
unsigned int mf= max_front_size();
for (unsigned int i=0; i < mf; ++i) {
++it;
}
// use tii_ so that it does not subdivide
double split = CGAL::to_interval(it->time()).second;
if (!INF && (CGAL::compare(end_priority(), it->time())==CGAL::SMALLER
|| CGAL::compare(end_priority(), Priority(split))==CGAL::SMALLER)) {
std::cout << "Past end in Queue " << end_priority() << ", "
<< it->time() << ", " << Priority(split) << std::endl;
//all_in_front_=true;
ub_= CGAL::to_interval(end_time_).second;
set_front(back_.begin(), back_.end(), Item::FRONT);
front_.splice(front_.end(), back_);
while (it != front_.end()) {
if (CGAL::compare(it->time(), end_priority())==CGAL::LARGER) break;
}
set_front(it, front_.end(), Item::INF);
std::vector<Item*> temp;
for (typename Queue::iterator c= it; c != front_.end(); ++c) {
temp.push_back(&*c);
#ifndef NDEBUG
inf_.push_back(&*c);
#endif
//std::cout << "Dropping inf event " << &*c << std::endl;
}
front_.erase(it, front_.end());
for (unsigned int i=0; i< temp.size(); ++i) {
unmake_event(temp[i]);
}
} else {
while (CGAL::compare(it->time(), Priority(split)) != CGAL::LARGER
&& it != front_.end()) ++it;
if (it != front_.end()) {
set_front(it, front_.end(), Item::BACK);
back_.splice(back_.begin(), front_, it, front_.end());
double oub=ub_;
//all_in_front_=false;
ub_ = split;
//CGAL_assertion(!too_big(ub_));
//CGAL_assertion(ub_ <= end_split());
step_= std::abs(ub_-oub);
if (step_<=0) {
/*if (dprint) std::cout << "fixing step since " << oub
<< " equals new bound" << std::endl;*/
CGAL_ERROR("Roundoff error in split " << split << " " << ub_ << " "
<< oub);
step_=.00001;
}
//CGAL_assertion(!all_in_front_);
/*CGAL_postcondition_code(if (step_<0) std::cerr << step_ << std::endl;);
CGAL_postcondition_code(if (step_<0) std::cerr << ub_ << std::endl;);
CGAL_postcondition_code(if (step_<0) std::cerr << oub << std::endl;);
CGAL_postcondition_code(if (step_<0) std::cerr << front_.back().time() << std::endl;);
CGAL_postcondition_code(if (step_==0) for (typename Queue::const_iterator it=front_.begin(); it != front_.end(); ++it) std::cout << *it << std::endl);
CGAL_postcondition(step_>=0);*/
}
}
}
/*NT end_split() const
{
return end_split_;
}*/
/*const Priority& end_time() const
{
return end_time_;
}*/
unsigned int max_front_size() const
{
return TARGET;
//return (std::max)(4U, static_cast<unsigned int>(std::sqrt(static_cast<double>(front_.size()+back_.size()))));
}
//typename FK::To_isolating_interval tii_;
Queue front_, back_;
#ifndef NDEBUG
std::vector<Key> inf_;
#endif
double ub_;
double step_;
//bool all_in_front_;
Priority end_time_;
Key null_event_;
//NT end_split_;
};
template <class D, unsigned int T, bool INF>
std::ostream &operator<<(std::ostream &out, const Two_list_pointer_event_queue<D, INF, T> &q)
{
q.write(out);
return out;
}
} } //namespace CGAL::Kinetic
#endif
|