File: Linear_cell_complex_constructors.h

package info (click to toggle)
cgal 4.0-5
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 65,068 kB
  • sloc: cpp: 500,870; ansic: 102,544; sh: 321; python: 92; makefile: 75; xml: 2
file content (551 lines) | stat: -rw-r--r-- 18,492 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
// Copyright (c) 2011 CNRS and LIRIS' Establishments (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s)     : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#ifndef CGAL_LINEAR_CELL_COMPLEX_CONSTRUCTORS_H
#define CGAL_LINEAR_CELL_COMPLEX_CONSTRUCTORS_H 1

#include <CGAL/Combinatorial_map_constructors.h>
#include <CGAL/Triangulation_2.h>
#include <CGAL/Triangulation_3.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/IO/File_header_OFF.h>
#include <CGAL/IO/File_scanner_OFF.h>
#include <CGAL/Linear_cell_complex_incremental_builder.h>
#include <iostream>
#include <map>
#include <vector>
#include <list>

namespace CGAL {

  /** @file Linear_cell_complex_constructors.h
   * Some construction operations for a linear cell complex from other
   * CGAL data structures.
   */

  /** Import an embedded plane graph read into a flux into a
   *  linear cell complex.
   * @param alcc the linear cell complex where the graph will be imported.
   * @param ais the istream where read the graph.
   * @return A dart created during the convertion.
   */
  template< class LCC >
  typename LCC::Dart_handle import_from_plane_graph(LCC& alcc,
                                                    std::istream& ais)
  {
    CGAL_static_assertion( LCC::dimension>=2 && LCC::ambient_dimension==2 );
  
    typedef typename LCC::Dart_handle Dart_handle;
    typedef typename LCC::Traits::Direction_2 Direction;
    typedef typename std::list<Dart_handle>::iterator List_iterator;
    typedef typename std::map<Direction, Dart_handle>::iterator LCC_iterator;
  
    // Arrays of vertices
    std::vector< typename LCC::Vertex_attribute_handle > initVertices;
    std::vector< std::list<Dart_handle> > testVertices;

    std::string txt;
    typename LCC::FT x, y;
    Dart_handle d1 = NULL, d2 = NULL;
    unsigned int v1, v2;
  
    unsigned int nbSommets = 0;
    unsigned int nbAretes = 0;
  
    ais >> nbSommets >> nbAretes;
    while (nbSommets > 0)
    {
      if (!ais.good())
      {
        std::cout << "Problem: file does not contain enough vertices."
                  << std::endl;
        return NULL;
      }

      ais >> x >> y;
      initVertices.push_back(alcc.create_vertex_attribute
                             (typename LCC::Point(x, y)));
      testVertices.push_back(std::list<Dart_handle>());
      --nbSommets;
    }

    while (nbAretes > 0)
    {
      if (!ais.good())
      {
        std::cout << "Problem: file does not contain enough edges."
                  << std::endl;
        return NULL;
      }

      // We read an egde (given by the number of its two vertices).
      ais >> v1 >> v2;
      --nbAretes;

      CGAL_assertion(v1 < initVertices.size());
      CGAL_assertion(v2 < initVertices.size());

      d1 = alcc.create_dart(initVertices[v1]);
      d2 = alcc.create_dart(initVertices[v2]);
      alcc.link_beta(d1, d2, 2);

      testVertices[v1].push_back(d1);
      testVertices[v2].push_back(d2);
    }

    // LCC associating directions and darts.
    std::map<Direction, Dart_handle> tabDart;
    List_iterator it;
    LCC_iterator  it2;

    Dart_handle first = NULL;
    Dart_handle prec = NULL;
    typename LCC::Point sommet1, sommet2;
  
    for (unsigned int i = 0; i < initVertices.size(); ++i)
    {
      it = testVertices[i].begin();
      if (it != testVertices[i].end()) // Si la liste n'est pas vide.
      {
        // 1. We insert all the darts and sort them depending on the direction
        tabDart.clear();
      
        sommet1 = LCC::point(*it);
        sommet2 = LCC::point((*it)->beta(2));
      
        tabDart.insert(std::pair<Direction, Dart_handle>
                       (typename LCC::Traits::Construct_direction_2()
                        (typename LCC::Traits::Construct_vector()
                         (sommet1,sommet2)), *it));
      
        ++it;
        while (it != testVertices[i].end())
        {
          sommet2 = LCC::point((*it)->beta(2));
          tabDart.insert(std::pair<Direction, Dart_handle>
                         (typename LCC::Traits::Construct_direction_2()
                          (typename LCC::Traits::Construct_vector()
                           (sommet1,sommet2)), *it));
          ++it;
        }
      
        // 2. We run through the array of darts and 1 links darts.
        it2 = tabDart.begin();
        first = it2->second;
        prec = first;
        ++it2;

        while (it2 != tabDart.end())
        {
          alcc.template link_beta<0>(prec, it2->second->beta(2));
          prec = it2->second;
          ++it2;
        }
        alcc.template link_beta<0>(prec, first->beta(2));
      }
    }

    // We return a dart from the imported object.
    return first;
  }

  /** Convert a given Triangulation_2 into a 2D linear cell complex.
   * @param alcc the used linear cell complex.
   * @param atr the Triangulation_2.
   * @param aface_to_dart a pointer to a std::map associating to each
   *        triangle of atr a corresponding dart in alcc. Not used if NULL.
   * @return A dart incident to the infinite vertex.
   */
  template < class LCC, class Triangulation >
  typename LCC::Dart_handle import_from_triangulation_2
  (LCC& alcc, const Triangulation &atr,
   std::map<typename Triangulation::Face_handle,
            typename LCC::Dart_handle >* aface_to_dart=NULL)
  {
    CGAL_static_assertion( LCC::dimension>=2 && LCC::ambient_dimension==2 );
    
    // Case of empty triangulations.
    if (atr.number_of_vertices() == 0) return NULL;

    // Check the dimension.
    if (atr.dimension() != 2) return NULL;
    CGAL_assertion(atr.is_valid());

    typedef typename Triangulation::Vertex_handle         TVertex_handle;
    typedef typename Triangulation::All_vertices_iterator TVertex_iterator;
    typedef typename Triangulation::All_faces_iterator    TFace_iterator;
    typedef typename std::map
      < TFace_iterator, typename LCC::Dart_handle >::iterator itmap_tcell;

    // Create vertices in the map and associate in a map
    // TVertex_handle and vertices in the map.
    std::map< TVertex_handle, typename LCC::Vertex_attribute_handle > TV;
    for (TVertex_iterator itv = atr.all_vertices_begin();
         itv != atr.all_vertices_end(); ++itv)
    {
      TV[itv] = alcc.create_vertex_attribute(itv->point());
    }

    // Create the triangles and create a map to link Cell_iterator
    // and triangles.
    TFace_iterator it;

    std::map<typename Triangulation::Face_handle, typename LCC::Dart_handle> TC;
    std::map<typename Triangulation::Face_handle, typename LCC::Dart_handle>*
      mytc = (aface_to_dart==NULL?&TC:aface_to_dart);
    
    itmap_tcell maptcell_it;

    typename LCC::Dart_handle res=NULL, dart=NULL;
    typename LCC::Dart_handle cur=NULL, neighbor=NULL;

    for (it = atr.all_faces_begin(); it != atr.all_faces_end(); ++it)
    {
      /*     if (it->vertex(0) != atr.infinite_vertex() &&
             it->vertex(1) != atr.infinite_vertex() &&
             it->vertex(2) != atr.infinite_vertex() &&
             it->vertex(3) != atr.infinite_vertex())
      */
      {
        res = alcc.make_triangle(TV[it->vertex(0)],
                                 TV[it->vertex(1)],
                                 TV[it->vertex(2)]);

        if ( dart==NULL )
        {
          if ( it->vertex(0) == atr.infinite_vertex() )
            dart = res;
          else if ( it->vertex(1) == atr.infinite_vertex() )
            dart = res->beta(1);
          else if ( it->vertex(2) == atr.infinite_vertex() )
            dart = res->beta(0);
        }
        
        for (unsigned int i=0; i<3; ++i)
        {
          switch (i)
          {
          case 0: cur = res->beta(1); break;
          case 1: cur = res->beta(0); break;
          case 2: cur = res; break;
          }

          maptcell_it = mytc->find(it->neighbor(i));
          if (maptcell_it != mytc->end())
          {
            switch (atr.mirror_index(it,i) )
            {
            case 0: neighbor = maptcell_it->second->beta(1);
              break;
            case 1: neighbor = maptcell_it->second->beta(0);
              break;
            case 2: neighbor = maptcell_it->second; break;
            }
            alcc.template topo_sew<2>(cur, neighbor);
          }
        }
        (*mytc)[it] = res;
      }
    }

    CGAL_assertion(dart!=NULL);
    return dart;
  }
  
  /** Convert a given Triangulation_3 into a 3D linear cell complex.
   * @param alcc the used linear cell complex.
   * @param atr the Triangulation_3.
   * @param avol_to_dart a pointer to a std::map associating to each
   *        tetrahedron of atr a corresponding dart in alcc. Not used if NULL.
   * @return A dart incident to the infinite vertex.
   */
  template < class LCC, class Triangulation >
  typename LCC::Dart_handle import_from_triangulation_3
  (LCC& alcc, const Triangulation &atr,
   std::map<typename Triangulation::Cell_handle,
            typename LCC::Dart_handle >* avol_to_dart=NULL)
  {
    CGAL_static_assertion( LCC::dimension>=3 && LCC::ambient_dimension==3 );
    
    // Case of empty triangulations.
    if (atr.number_of_vertices() == 0) return NULL;

    // Check the dimension.
    if (atr.dimension() != 3) return NULL;
    CGAL_assertion(atr.is_valid());

    typedef typename Triangulation::Vertex_handle    TVertex_handle;
    typedef typename Triangulation::Vertex_iterator  TVertex_iterator;
    typedef typename Triangulation::Cell_iterator    TCell_iterator;
    typedef typename std::map
      < TCell_iterator, typename LCC::Dart_handle >::iterator itmap_tcell;

    // Create vertices in the map and associate in a map
    // TVertex_handle and vertices in the map.
    std::map< TVertex_handle, typename LCC::Vertex_attribute_handle > TV;
    for (TVertex_iterator itv = atr.vertices_begin();
         itv != atr.vertices_end(); ++itv)
    {
      TV[itv] = alcc.create_vertex_attribute(itv->point());
    }

    // Create the tetrahedron and create a map to link Cell_iterator
    // and tetrahedron.
    TCell_iterator it;

    std::map<typename Triangulation::Cell_handle, typename LCC::Dart_handle> TC;
    std::map<typename Triangulation::Cell_handle, typename LCC::Dart_handle>*
      mytc = (avol_to_dart==NULL?&TC:avol_to_dart);
    
    itmap_tcell maptcell_it;

    typename LCC::Dart_handle res=NULL, dart=NULL;
    typename LCC::Dart_handle cur=NULL, neighbor=NULL;

    for (it = atr.cells_begin(); it != atr.cells_end(); ++it)
    {
      /*     if (it->vertex(0) != atr.infinite_vertex() &&
             it->vertex(1) != atr.infinite_vertex() &&
             it->vertex(2) != atr.infinite_vertex() &&
             it->vertex(3) != atr.infinite_vertex())
      */
      {
        res = alcc.make_tetrahedron(TV[it->vertex(0)],
                                    TV[it->vertex(1)],
                                    TV[it->vertex(2)],
                                    TV[it->vertex(3)]);

        if ( dart==NULL )
        {
          if ( it->vertex(0) == atr.infinite_vertex() )
            dart = res;
          else if ( it->vertex(1) == atr.infinite_vertex() )
            dart = res->beta(1);
          else if ( it->vertex(2) == atr.infinite_vertex() )
            dart = res->beta(2);
          else if ( it->vertex(3) == atr.infinite_vertex() )
            dart = res->beta(2)->beta(0);
        }
        
        for (unsigned int i = 0; i < 4; ++i)
        {
          switch (i)
          {
          case 0: cur = res->beta(1)->beta(2); break;
          case 1: cur = res->beta(0)->beta(2); break;
          case 2: cur = res->beta(2); break;
          case 3: cur = res; break;
          }

          maptcell_it = mytc->find(it->neighbor(i));
          if (maptcell_it != mytc->end())
          {
            switch (atr.mirror_index(it,i) )
            {
            case 0: neighbor = maptcell_it->second->beta(1)->beta(2);
              break;
            case 1: neighbor = maptcell_it->second->beta(0)->beta(2);
              break;
            case 2: neighbor = maptcell_it->second->beta(2); break;
            case 3: neighbor = maptcell_it->second; break;
            }
            while (LCC::vertex_attribute(neighbor) !=
                   LCC::vertex_attribute(cur->other_extremity()) )
              neighbor = neighbor->beta(1);
            alcc.template topo_sew<3>(cur, neighbor);
          }
        }
        (*mytc)[it] = res;
      }
    }
    CGAL_assertion(dart!=NULL);
    return dart;
  }

  /** Import a given Polyhedron_3 into a Linear_cell_complex.
   * @param alcc the linear cell complex where Polyhedron_3 will be converted.
   * @param apoly the Polyhedron.
   * @return A dart created during the convertion.
   */
  template< class LCC, class Polyhedron >
  typename LCC::Dart_handle import_from_polyhedron_3(LCC& alcc, 
                                                     const Polyhedron &apoly)
  {
    CGAL_static_assertion( LCC::dimension>=2 && LCC::ambient_dimension==3 );

    typedef typename Polyhedron::Halfedge_const_handle  Halfedge_handle;
    typedef typename Polyhedron::Facet_const_iterator   Facet_iterator;
    typedef typename Polyhedron::Halfedge_around_facet_const_circulator
      HF_circulator;

    typedef std::map < Halfedge_handle, typename LCC::Dart_handle> 
      Halfedge_handle_map;
    typedef typename Halfedge_handle_map::iterator itmap_hds;
    Halfedge_handle_map TC;

    itmap_hds it;
    typename LCC::Dart_handle d = NULL, prev = NULL;
    typename LCC::Dart_handle firstFacet = NULL, firstAll = NULL;

    // First traversal to build the darts and link them.
    for (Facet_iterator i = apoly.facets_begin(); i != apoly.facets_end(); ++i)
    {
      HF_circulator j = i->facet_begin();
      prev = NULL;
      do
      {
        d = alcc.create_dart();
        TC[j] = d;
      
        if (prev != NULL) alcc.template link_beta<1>(prev, d);
        else firstFacet = d;
        it = TC.find(j->opposite());
        if (it != TC.end())
          alcc.link_beta(d, it->second, 2);
        prev = d;
      }
      while (++j != i->facet_begin());
      alcc.template link_beta<1>(prev, firstFacet);
      if (firstAll == NULL) firstAll = firstFacet;
    }

    // Second traversal to update the geometry.
    // We run one again through the facets of the HDS.
    for (Facet_iterator i = apoly.facets_begin(); i != apoly.facets_end(); ++i)
    {
      HF_circulator j = i->facet_begin();
      do
      {
        d = TC[j]; // Get the dart associated to the Halfedge
        if (LCC::vertex_attribute(d) == NULL)
        {
          alcc.set_vertex_attribute
            (d, alcc.create_vertex_attribute(j->opposite()->vertex()->point()));
        }
      }
      while (++j != i->facet_begin());
    }
    return firstAll;
  }

  template < class LCC >
  void load_off(LCC& alcc, std::istream& in)
  {
    File_header_OFF  m_file_header;
    File_scanner_OFF scanner( in, m_file_header.verbose());
    if ( ! in) return;
    m_file_header = scanner;  // Remember file header after return.

    Linear_cell_complex_incremental_builder_3<LCC> B( alcc);
    B.begin_surface( scanner.size_of_vertices(),
                     scanner.size_of_facets(),
                     scanner.size_of_halfedges());

    typedef typename LCC::Point Point;

    // read in all vertices
    std::size_t  i;
    for ( i = 0; i < scanner.size_of_vertices(); i++) {
      Point p;
      file_scan_vertex( scanner, p);
      B.add_vertex( p);
      scanner.skip_to_next_vertex( i);
    }
    /* TODO rollback
       if ( ! in  || B.error()) {
       B.rollback();
       in.clear( std::ios::badbit);
       return;
       }
    */

    // read in all facets
    for ( i = 0; i < scanner.size_of_facets(); i++)
    {
      B.begin_facet();
      std::size_t no;
      scanner.scan_facet( no, i);
      /* TODO manage errors
         if( ! in || B.error() || no < 3) {
         if ( scanner.verbose()) {
         std::cerr << " " << std::endl;
         std::cerr << "Polyhedron_scan_OFF<Traits>::" << std::endl;
         std::cerr << "operator()(): input error: facet " << i
         << " has less than 3 vertices." << std::endl;
         }
         B.rollback();
         in.clear( std::ios::badbit);
         return;
         } */
      for ( std::size_t j = 0; j < no; j++) {
        std::size_t index;
        scanner.scan_facet_vertex_index( index, i);
        B.add_vertex_to_facet( index);
      }
      B.end_facet();
      scanner.skip_to_next_facet( i);
    }
    /* TODO manage errors
       if ( ! in  || B.error()) {
       B.rollback();
       in.clear( std::ios::badbit);
       return;
       }
       if ( B.check_unconnected_vertices()) {
       if ( ! B.remove_unconnected_vertices()) {
       if ( scanner.verbose()) {
       std::cerr << " " << std::endl;
       std::cerr << "Polyhedron_scan_OFF<Traits>::" << std::endl;
       std::cerr << "operator()(): input error: cannot "
       "succesfully remove isolated vertices."
       << std::endl;
       }
       B.rollback();
       in.clear( std::ios::badbit);
       return;
       }
       }*/
    B.end_surface();
  }

  /** Convert a Polyhedron_3 read into a flux into 3D linear cell complex.
   * @param alcc the linear cell complex where Polyhedron_3 will be converted.
   * @param ais the istream where read the Polyhedron_3.
   * @return A dart created during the convertion.
   */
  template < class LCC >
  typename LCC::Dart_handle
  import_from_polyhedron_3_flux(LCC& alcc, std::istream& ais)
  {
    if (!ais.good())
    {
      std::cout << "Error reading flux." << std::endl;
      return NULL;
    }
    CGAL::Polyhedron_3<typename LCC::Traits> P;
    ais >> P;
    return import_from_polyhedron_3<LCC, CGAL::Polyhedron_3
                                    <typename LCC::Traits> > (alcc, P);
  }

} // namespace CGAL

#endif // CGAL_LINEAR_CELL_COMPLEX_CONSTRUCTORS_H //
// EOF //