1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
// Copyright (c) 2005 Stanford University (USA).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Kinetic_data_structures/include/CGAL/Polynomial/CORE_Expr_root_stack.h $
// $Id: CORE_Expr_root_stack.h 67093 2012-01-13 11:22:39Z lrineau $
//
//
// Author(s) : Daniel Russel <drussel@alumni.princeton.edu>
#ifndef CGAL_POLYNOMIAL_CORE_SOLVER_H
#define CGAL_POLYNOMIAL_CORE_SOLVER_H
#include <CGAL/Polynomial/basic.h>
#include <CGAL/CORE_Expr.h>
#include <CGAL/Polynomial/internal/CORE_polynomial.h>
#include <CGAL/Polynomial/internal/Root_stack_traits_base.h>
#include <CGAL/CORE_BigInt.h>
#include <iostream>
/*namespace CGAL {
double to_double(const CORE::BigInt &bi)
{
return bi.doubleValue();
}
} //namespace CGAL*/
namespace CGAL { namespace POLYNOMIAL {
class CORE_Expr_root_stack
{
protected:
typedef CORE_Expr_root_stack This;
//typedef CORE::Poly<CORE::BigInt> BIP;
public:
typedef internal::CORE_polynomial Function;
typedef Function::NT Coef;
typedef CORE::Sturm<Coef> CORE_Sturm;
struct Traits: public internal::Root_stack_traits_base<Function> {
};
typedef CORE::Expr Root;
CORE_Expr_root_stack(const Function &f,
const Root &lb,
const Root &ub,
const Traits &tr): f_(f), ub_(ub), cur_valid_(false), tr_(tr), one_even_left_(false){
initialize(lb);
}
CORE_Expr_root_stack(): num_roots_(0){}
const Root& top() const
{
CGAL_precondition(!empty());
if(!cur_valid_) make_cur_valid();
return cur_;
}
void pop() {
if (!one_even_left_) {
--num_roots_;
cur_valid_=false;
CGAL_precondition(num_roots_>=0);
} else {
one_even_left_=false;
}
}
bool empty() const
{
if (num_roots_ != 0 && !cur_valid_) {
make_cur_valid();
}
return num_roots_==0;
}
std::ostream &write(std::ostream &out) const {
return out << f_ << ": " << cur_ << std::endl;
}
protected:
void make_cur_valid() const {
CGAL_precondition(!cur_valid_);
if (num_roots_==0) {
no_roots();
} else {
make_root();
enforce_upper_bound();
}
}
Function f_;
CORE_Sturm sturm_;
Root ub_;
mutable Root cur_;
mutable bool cur_valid_;
mutable int num_roots_;
mutable CORE::BigFloat bflb_, bfub_;
Traits tr_;
mutable bool one_even_left_;
mutable int offset_in_interval_;
mutable CGAL::Sign last_sign_;
void initialize(const Root& lb) {
if (f_.degree()<=0) {
no_roots();
return;
} else {
//std::cout <<"solving " << f_ << std::endl;
f_.contract();
//std::cout << f_.core_polynomial() << std::endl;
sturm_= CORE_Sturm(f_.core_polynomial()/*, false*/); //BigInt to BigRat
offset_in_interval_=0;
//CORE::BigFloat bflb, bfub;
/*if (lb == -std::numeric_limits<Root>::infinity()){
bflb_= -f_.core_polynomial().CauchyUpperBound();
} else {*/
CORE::BigFloat offset(.5);
CGAL_postcondition(offset.isExact());
bflb_= bf_lower_bound(lb);
CGAL_postcondition(bflb_.isExact());
do {
bflb_ -= offset; // hack to get around assuming core is consistent with 0 endpoint
last_sign_=CGAL::sign(f_.core_polynomial().eval(bflb_));
} while (last_sign_==CGAL::ZERO);
CGAL_postcondition(bflb_.isExact());
bfub_= bf_upper_bound(ub_);
CGAL_precondition(bflb_ < bfub_);
//std::cout << " in interval: " << bflb_ << " " << bfub_ << std::endl;
num_roots_= sturm_.numberOfRoots(bflb_, bfub_);
//std::cout << "nr= " << num_roots_ << std::endl;
//CORE::Expr testr;
++num_roots_;
do {
--num_roots_;
if ( num_roots_ == 0) {
no_roots();
return;
}
make_root();
} while (cur_ < lb);
//make_cur_root(testr);
}
//std::cout << "There are " << num_roots_ << " roots.\n";
enforce_upper_bound();
}
void enforce_upper_bound() const {
if (cur_ < ub_) return;
else {
//std::cout << "Rejected " << cur_ << std::endl;
no_roots();
}
}
void make_root() const {
CGAL_precondition(num_roots_!=0);
//std::cout << "making root: " << CGAL::to_double(bflb_) << " " << CGAL::to_double(bfub_) << std::endl;
CORE::BFInterval bfi;
bfi= sturm_.isolateRoot(1+offset_in_interval_, bflb_, bfub_);
//std::cout << "got: " << CGAL::to_double(bfi.first) << " " << CGAL::to_double(bfi.second) << std::endl;
//int nr= sturm_.numberOfRoots(bfi.first, bfi.second);
//int nr=1;
CGAL::Sign cur_sign=CGAL::sign(f_.core_polynomial().eval(bfi.second));
if (cur_sign==0) {
Traits::Sign_after sa= tr_.sign_after_object();
cur_sign= sa(f_, bfi.second);
++offset_in_interval_;
} else {
offset_in_interval_=0;
bflb_= bfi.second;
}
CGAL_precondition(cur_sign!= CGAL::ZERO);
CGAL_precondition(last_sign_ != CGAL::ZERO);
if (last_sign_== cur_sign) {
one_even_left_=true;
//std::cout << "it is even" << std::endl;
} else {
one_even_left_=false;
}
last_sign_= cur_sign;
//std::cout << nr << " " << bfi.first << " " << bfi.second << std::endl;
cur_= CORE::Expr(f_.core_polynomial(), bfi);
cur_valid_=true;
//cur_ =Root(e/*/f_.scale()*/, nr);
//std::cout << "root= " << cur_ << " " << e << std::endl;
}
void no_roots() const {
//ub_= CORE::Expr(0);
cur_= infinity<Root>();
num_roots_=0;
one_even_left_=false;
cur_valid_=false;
}
/*void initialize_counters(const Root &lb) {
std::cout << "Computing strum of " << poly_ << "..." << std::flush;
CORE_Sturm sturm(poly_);
std::cout << "done." << std::endl;
num_roots_=0;
CGAL_assertion(-ub_ != infinity<Root>());
num_roots_= sturm.numberOfRoots();
if (lb== -infinity<Root>() && ub_== infinity<Root>()) {
counter_=0;
}
else if (ub_ == infinity<Root>()) {
std::cout << bf_lower_bound(lb.representation()) << std::endl;
//num_roots_= sturm.numberOfRootsAbove(bf_lower_bound(lb.representation()));
counter_ = sturm.numberOfRootsBelow(bf_lower_bound(lb.representation()));
}
else if (lb == infinity<Root>()) {
//num_roots_= sturm.numberOfRootsBelow(bf_upper_bound(ub_.representation()));
counter_ = 0;
}
else {
counter_= sturm.numberOfRootsBelow(bf_lower_bound(lb.representation()));
}
}*/
//! There are probably better ways of doing this
Coef bf_lower_bound(const CORE::Expr &rt) const
{
machine_double lb, ub;
rt.doubleInterval(lb, ub);
return Coef(lb);
}
//! There are probably better ways of doing this
Coef bf_upper_bound(const CORE::Expr &rt) const
{
machine_double lb, ub;
rt.doubleInterval(lb, ub);
return Coef(ub);
}
};
std::ostream &operator<<(std::ostream &out, const CORE_Expr_root_stack &o) {
return o.write(out);
}
} } //namespace CGAL::POLYNOMIAL;
#endif
|