1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
// Copyright (c) 2005 Stanford University (USA).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Kinetic_data_structures/include/CGAL/Polynomial/Numeric_root_stack.h $
// $Id: Numeric_root_stack.h 67093 2012-01-13 11:22:39Z lrineau $
//
//
// Author(s) : Daniel Russel <drussel@alumni.princeton.edu>
#ifndef CGAL_POLYNOMIAL_NUMERIC_ROOT_STACK_H
#define CGAL_POLYNOMIAL_NUMERIC_ROOT_STACK_H
#include <CGAL/Polynomial/basic.h>
#include <CGAL/Polynomial/internal/numeric_solvers.h>
#include <CGAL/Polynomial/Polynomial.h>
#include <CGAL/Polynomial/internal/Double_with_infinity.h>
#include <iterator>
#ifdef CGAL_USE_GSL
#include <CGAL/Polynomial/internal/GSL_numeric_solver.h>
#endif
namespace CGAL { namespace POLYNOMIAL { namespace internal {
template <bool HINF=std::numeric_limits<double>::has_infinity>
struct Numeric_pick_root {
typedef double Root;
//typedef internal::Double_with_infinity Root;
};
template <>
struct Numeric_pick_root<false> {
typedef internal::Double_with_infinity Root;
};
} } } //namespace CGAL::POLYNOMIAL::internal
namespace CGAL { namespace POLYNOMIAL {
#ifdef CGAL_USE_GSL
#define CGAL_DEFAULT_NUMERIC_SOLVER CGAL::POLYNOMIAL::internal::GSL_numeric_solver
#define CGAL_DEFAULT_CLEANED_NUMERIC_SOLVER CGAL::POLYNOMIAL::internal::GSL_cleaned_numeric_solver
#else
#define CGAL_DEFAULT_NUMERIC_SOLVER CGAL::POLYNOMIAL::internal::Turkowski_numeric_solver
#define CGAL_DEFAULT_CLEANED_NUMERIC_SOLVER CGAL::POLYNOMIAL::internal::Turkowski_cleaned_numeric_solver
#endif
template <class Solver_traits, class Numeric_solver=CGAL_DEFAULT_NUMERIC_SOLVER >
class Numeric_root_stack
{
public:
typedef internal::Numeric_pick_root<>::Root Root;
protected:
/* All this mess is to handle when roots are not doubles and when the coefficients are not doubles
*/
template <class Rt>
void initialize_2(const double *b, const double *e, double lb, double ub, std::vector<Rt> &roots) {
std::vector<double> lroots;
ns_(b, e, lb, ub, lroots);
roots.insert(roots.end(), lroots.begin(), lroots.end());
}
void initialize_2(const double *b, const double *e, double lb, double ub, std::vector<double> &roots) {
ns_(b, e, lb, ub, roots);
}
template <class Fn>
void initialize(const Fn &f, Root lb, Root ub) {
std::vector<double> c(f.degree()+1);
for (unsigned int i=0; i<= f.degree(); ++i) {
c[i]= to_double(f[i]);
}
initialize_2(&*c.begin(), &*c.begin()+ f.degree()+1,
static_cast<double>(lb), static_cast<double>(ub),
roots_);
/*if (CLEAN) {
polynomial_compute_cleaned_roots(&*c.begin(), &*c.begin()+ f.degree()+1, lb, ub, roots_);
} else {
polynomial_compute_roots(&*c.begin(), &*c.begin()+ f.degree()+1, lb, ub, roots_);
}*/
}
void initialize(const Polynomial<double> &f, Root lb, Root ub) {
const double *p0= &*f.begin();
initialize_2(p0, p0+ f.degree()+1, static_cast<double>(lb), static_cast<double>(ub), roots_);
/*if (CLEAN) {
polynomial_compute_cleaned_roots(&*f.begin(), &*f.begin()+ f.degree()+1, lb, ub, roots_);
} else {
polynomial_compute_roots(&*f.begin(), &*f.begin()+ f.degree()+1, lb, ub, roots_);
}*/
}
public:
typedef typename Solver_traits::Function Function;
typedef Solver_traits Traits;
Numeric_root_stack(const typename Solver_traits::Function &f, Root lb, Root ub, const Solver_traits&) {
//std::cout << "Solving " << f << " from " << lb << " to " << ub;
initialize(f, lb, ub);
/*if (!roots_.empty()) std::cout << " got " << roots_.back() << std::endl;
else std::cout << std::endl;*/
#if 0
for (unsigned int i=1; i < roots_.size(); ++i) {
if (roots_[i]> roots_[i-1]){
std::cerr << "ERROR: roots out of order ";
std::copy(roots_.begin(), roots_.end(), std::ostream_iterator<double>(std::cerr, " "));
std::cerr << " for " << f << " from " << lb << " to " << ub << std::endl;
roots_.clear();
initialize(f,lb, ub);
}
}
#endif
//CGAL_Polynomial_postcondition(roots_[i] <= roots_[i-1]);
}
Numeric_root_stack(){};
void pop() {
CGAL_Polynomial_precondition(!roots_.empty());
roots_.pop_back();
}
const Root& top() const
{
CGAL_Polynomial_precondition(!roots_.empty());
return roots_.back();
}
bool empty() const
{
return roots_.empty();
}
protected:
Numeric_solver ns_;
std::vector<Root> roots_;
};
} } //namespace CGAL::POLYNOMIAL
#endif
|