File: Small_side_angle_bisector_decomposition_2.h

package info (click to toggle)
cgal 4.0-5
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 65,068 kB
  • sloc: cpp: 500,870; ansic: 102,544; sh: 321; python: 92; makefile: 75; xml: 2
file content (941 lines) | stat: -rw-r--r-- 30,392 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
// Copyright (c) 2006  Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Minkowski_sum_2/include/CGAL/Small_side_angle_bisector_decomposition_2.h $
// $Id: Small_side_angle_bisector_decomposition_2.h 67117 2012-01-13 18:14:48Z lrineau $
//
// Author(s)     : Ron Wein   <wein@post.tau.ac.il>
//                 (based on an old version by Eyal Flato)

#ifndef CGAL_SMALL_SIDE_ANGLE_BISECTOR_DECOMPOSITION_2_H
#define CGAL_SMALL_SIDE_ANGLE_BISECTOR_DECOMPOSITION_2_H

#include <CGAL/Polygon_2.h>
#include <vector>
#include <list>

namespace CGAL {

/*!
 * \class
 * Small-side angle-bisector decomposition strategy.
 */
template <class Kernel_, 
          class Container_ = std::vector<typename Kernel_::Point_2> >
class Small_side_angle_bisector_decomposition_2
{
public:

  typedef Kernel_                                        Kernel;
  typedef CGAL::Polygon_2<Kernel, Container_>            Polygon_2;
  typedef typename Kernel::Point_2                       Point_2;

private:

  typedef typename Kernel::Direction_2                   Direction_2;
  typedef typename Kernel::Segment_2                     Segment_2;

  typedef typename Polygon_2::Vertex_circulator          Vertex_circulator;

  // Kernel functors:
  typedef typename Kernel::Equal_2                       Equal_2;
  typedef typename Kernel::Construct_translated_point_2  Translate_point_2;
  typedef typename Kernel::Construct_vector_2            Construct_vector_2;
  typedef typename Kernel::Construct_direction_2         Construct_direction_2;
  typedef typename Kernel::Orientation_2                 Compute_orientation_2;
  typedef typename Kernel::Do_intersect_2                Do_intersect_2;
  typedef typename Kernel::Counterclockwise_in_between_2 Ccw_in_between_2;
        
  typedef std::list<unsigned int>                        Indices_list;
  typedef typename Indices_list::const_iterator          Indices_iterator;

  // Point with additional infomaration.
  struct Point_info_2
  {
    Point_2           point;
    bool              is_reflex;
    unsigned int      reflex_count;
    Indices_list      visible;
    Indices_list      non_visible;

    // Default constructor.
    Point_info_2 () :
      is_reflex (false),
      reflex_count (0),
      visible (),
      non_visible ()
    {}

    // Check if the given vertex is visible.
    bool is_visible (unsigned int index) const
    {
      Indices_iterator    it;

      for (it = visible.begin(); it != visible.end(); ++it)
      {
        if (*it == index)
          return (true);
      }

      return (false);
    }

    // Check if the given vertex is non-visible.
    bool is_non_visible (unsigned int index) const
    {
      Indices_iterator    it;

      for (it = non_visible.begin(); it != non_visible.end(); ++it)
      {
        if (*it == index)
          return (true);
      }

      return (false);
    }
  };
 
  typedef std::vector<Point_info_2>                Point_vector_2;

  // Data members:
  Equal_2                 f_equal;
  Translate_point_2       f_add;
  Construct_vector_2      f_vector;
  Construct_direction_2   f_direction;
  Compute_orientation_2   f_orientation;
  Do_intersect_2          f_do_intersect;
  Ccw_in_between_2        f_ccw_in_between;

public:

  /*! Default constructor. */
  Small_side_angle_bisector_decomposition_2 ()
  {
    // Obtain kernel functors.
    Kernel                ker;

    f_equal = ker.equal_2_object();
    f_add = ker.construct_translated_point_2_object(); 
    f_vector = ker.construct_vector_2_object();
    f_direction = ker.construct_direction_2_object();
    f_orientation = ker.orientation_2_object();
    f_do_intersect = ker.do_intersect_2_object();
    f_ccw_in_between = ker.counterclockwise_in_between_2_object();
  }

  /*!
   * Decompose a simple polygon to convex sub-polygons.
   * \param pgn The input polygon.
   * \param oi An output iterator of convex polygons.
   * \return A past-the-end iterator for the sub-polygons.
   */
  template <class OutputIterator>
  OutputIterator operator() (const Polygon_2& pgn,
                             OutputIterator oi) const
  {
    // Construct a point-info vector that represents the input polygon.
    Point_vector_2   vec;

    if (_construct_point_vector (pgn, vec))
    {
      // The input polygon is convex - just return it as is (we use the
      // auxiliary function to make sure the returned polygon is oriented
      // counterclockwise).
      oi = _output_polygon (vec, oi);
      return (oi);
    }

    // Prepare a queue of polygons, represented as point vectors, to decompose.
    // We first try the small-side decomposition, and if we fail we turn to
    // the normal angle-bisector decomposition. 
    std::list<Point_vector_2>   ss_queue;
    std::list<Point_vector_2>   ab_queue;
    unsigned int                ind1, ind2;
    Point_vector_2              vec1, vec2;

    ind1 = ind2 = static_cast<unsigned int>(-1);        // Pacify some compiler

    ss_queue.push_back (vec);

    // Use the small-side decomposition as long as possible.
    while (! ss_queue.empty())
    {
      // Extract the first polygon from the queue.
      vec = ss_queue.front();
      ss_queue.pop_front();

      // Try computing a minimal diagonal eliminating two reflex vertices.
      if (_compute_min_diagonal (vec, ind1, ind2))
      {
        // We have found a minimal diagonal - use it to split the polygon.
        _split_by_diagonal (vec, ind1, ind2,
                            false,
                            vec1, vec2);

        // For either of the resulting sub-polygons: Report them if they are
        // convex, otherwise decompose them recursively.
        if (vec1[vec1.size() - 1].reflex_count == 0)
          oi = _output_polygon (vec1, oi);
        else
          ss_queue.push_back (vec1);

        if (vec2[vec2.size() - 1].reflex_count == 0)
          oi = _output_polygon (vec2, oi);
        else
          ss_queue.push_back (vec2);
      }
      else
      {
        // We have failed to find a minimal diagonal eliminating two reflex
        // vertices - use the simple angle bisector method for this polygon.
        ab_queue.push_back (vec);
      }
    }

    // Decompose the remaining polygons.
    while (! ab_queue.empty())
    {
      // Extract the first polygon from the queue.
      vec = ab_queue.front();
      ab_queue.pop_front();

      // Compute the best angle bisector and split the polygon accordingly.
      _approximate_angle_bisector (vec, ind1, ind2);

      _split_by_diagonal (vec, ind1, ind2,
                          true,
                          vec1, vec2);

      // For either of the resulting sub-polygons: Report them if they are
      // convex, otherwise decompose them recursively.
      if (vec1[vec1.size() - 1].reflex_count == 0)
        oi = _output_polygon (vec1, oi);
      else
        ab_queue.push_back (vec1);

      if (vec2[vec2.size() - 1].reflex_count == 0)
        oi = _output_polygon (vec2, oi);
      else
        ab_queue.push_back (vec2);
    }

    return (oi);
  }

private:

  /*! Return the succesive index of a 'point info' vector. */
  inline unsigned int _vec_succ (const Point_vector_2& vec,
                                 unsigned int i) const
  {
    return ((i + 1) % vec.size());
  }
        
  /*! Return the previous index of a 'point info' vector. */
  inline unsigned int _vec_pred (const Point_vector_2& vec,
                                 unsigned int i) const
  {
    if (i == 0)
      return (vec.size() - 1);
    return (i - 1);
  }

  /*!
   * Reflect the point b around the point a.
   * \return The result of: a + vec('a'-'b').
   */
  Point_2 _opposite_from_vertex (const Point_2& a, const Point_2& b) const
  {
    return (f_add (a, f_vector(b, a)));
  }

  // The "reflex zone" of a vertex v is the slice created by continuing the
  // edges incident to this vertex, from v to infinity. This enumeration
  // describes the location of a point with respect to this zone.
  enum Reflex_zone_position
  {
    LEFT_OF_ZONE = -1,
    INSIDE_ZONE = 0,
    RIGHT_OF_ZONE = 1,
    ON_ZONE_BOUNDARY = 3,
    OPPOSITE_OF_ZONE = 9
  };

  /*!
   * Get the position of a query point with respect to the reflex zone of a
   * given vertex.
   * \param vec A vector defining counterclockwise-oriented polygon.
   * \param v_ind The index of the vertex v.
   * \param q_pt A query point.
   * \return The location of the query point with respect to the zone.
   */
  Reflex_zone_position _query_reflex_zone (const Point_vector_2& vec, 
                                           unsigned int v_ind,
                                           const Point_2& q_pt) const
  {
    // Initialize q, the reflex vertex, and it previous and next vertices
    // and incident edges.
    const Point_2&  v_pt = vec[v_ind].point;
    const Point_2&  pred_pt = vec[_vec_pred(vec, v_ind)].point;
    const Point_2&  succ_pt = vec[_vec_succ(vec, v_ind)].point;
    Direction_2     pred_dir = f_direction (f_vector (v_pt, pred_pt));
    Direction_2     succ_dir = f_direction (f_vector (v_pt, succ_pt));
    Point_2         opp_pred_pt = _opposite_from_vertex (v_pt, pred_pt);
    Point_2         opp_succ_pt = _opposite_from_vertex (v_pt, succ_pt);
    Direction_2     opp_pred_dir = f_direction (f_vector (v_pt, opp_pred_pt));
    Direction_2     opp_succ_dir = f_direction (f_vector (v_pt, opp_succ_pt));
    Direction_2     q_dir = f_direction (f_vector (v_pt, q_pt));

    if (f_ccw_in_between (q_dir, opp_pred_dir, opp_succ_dir))
    {
      // The point is contained between the continuation of the edges around v,
      // so it is inside the reflex zone. 
      return (INSIDE_ZONE);
    }

    if (f_equal (q_dir, opp_pred_dir) || f_equal (q_dir, opp_succ_dir))
    {
      // The point lies on the boundary of the reflex zone.
      return (ON_ZONE_BOUNDARY);
    }

    if (f_ccw_in_between (q_dir, opp_succ_dir, pred_dir))
    {
      // The point lies to the left of the reflex zone.
      return (LEFT_OF_ZONE);
    }

    if (f_ccw_in_between (q_dir, succ_dir, opp_pred_dir))
    {
      // The point lies to the right of the reflex zone.
      return (RIGHT_OF_ZONE);
    }

    // If we reached here, the query point lies on the opposite side of the
    // reflex zone.
    CGAL_assertion (f_ccw_in_between (q_dir, pred_dir, succ_dir) ||
                    f_equal (q_dir, pred_dir) || f_equal (q_dir, succ_dir));

    return (OPPOSITE_OF_ZONE);
  }

  /*!
   * Check whether a given vertex u is visible from a reflex vertex v.
   * \param vec A vector defining counterclockwise-oriented polygon.
   * \param v_ind The index of the reflex vertex v.
   * \param u_ind The index of the vertex u.
   * \return Whether the vertices are visible.
   */
  bool _is_visible (Point_vector_2& vec,
                    unsigned int v_ind, unsigned int u_ind) const
  {
    CGAL_precondition (vec[v_ind].is_reflex);

    // Check whether the visiblity status is already known.
    if (vec[v_ind].is_visible (u_ind))
      return (true);

    if (vec[v_ind].is_non_visible (u_ind))
      return (false);
                
    // Check whether the diagonal (v_ind, u_ind) does not intersect any of
    // the polygn edges.
    bool    result;

    if (u_ind == v_ind ||
        u_ind == _vec_pred(vec, v_ind) ||
        u_ind == _vec_succ(vec, v_ind))
    {
      // A polygon edge (or a degenerate diagonal) is not considered as a legal
      // visibility diagonal.
      result = false;
    }
    else if (_query_reflex_zone (vec, v_ind, 
                                 vec[u_ind].point) == OPPOSITE_OF_ZONE)
    {
      // In this case the diagonal between u and v lies outside the polygon,
      // so the two vertices are not visible.
      result = false;
    }
    else
    {
      // Perform an exhaustive search on the polygon edges and check if any of
      // them intersects the diagonal segment uv.
      Segment_2       diag (vec[u_ind].point, vec[v_ind].point);
      unsigned int    curr = _vec_succ(vec, v_ind);
      unsigned int    next = _vec_succ(vec, curr);

      result = true;
      while (result && next != v_ind)
      {
        if (curr != u_ind && next != u_ind)
        {
          if (do_intersect (diag, 
                            Segment_2 (vec[curr].point, vec[next].point)))
            result = false;
        }

        curr = next;
        next = _vec_succ(vec, curr);
      }
    }

    // Update the visibility status.
    if (result)
    {
      vec[v_ind].visible.push_back (u_ind);                                
    }
    else
    {
      vec[v_ind].non_visible.push_back (u_ind);                                
    }
                
    return (result);
  }
        
  /*!
   * Construct a Point_info_2 vector from the given polygon.
   * \param poly The input polygon.
   * \param vec Output: The point vector.
   * \return Whether the polygon is convex.
   */
  bool _construct_point_vector (const Polygon_2& pgn,
                                Point_vector_2& vec) const
  {
    // Resize the vector to fit the polygon.
    const unsigned int  n = pgn.size();
    const bool          forward = (pgn.orientation() == COUNTERCLOCKWISE);
    Vertex_circulator          prev, curr, next;
    unsigned int        reflex_count = 0;
    unsigned int        k;

    vec.resize (n);

    // Initialize the vertex circulators.
    next = curr = prev = pgn.vertices_circulator();
      
    if (forward)
      --prev;
    else
      ++prev;

    // Traverse the polygon's vertices in a counterclockwise order and prepare
    // the output vector.
    for (k = 0; k < n; k++)
    {
      // Set the next vertex.
      if (forward)
        ++next;
      else
        --next;
 
      // Set the current point.
      vec[k].point = *curr;

      // Check if the current vertex is reflex by checking the orientation of
      // the polygon around it.
      vec[k].is_reflex = (f_orientation (*prev, *curr, *next) == RIGHT_TURN);
    
      // Set the number of reflex vertices from the beginning of the vector
      // until the k'th (including itself).
      if (vec[k].is_reflex)
        reflex_count++;

      vec[k].reflex_count = reflex_count;

      // Proceed to the next vertex.
      prev = curr;
      curr = next;
    }

    // The polygon is convex if there are not reflex vertices:
    return (reflex_count == 0);
  }
       
  /*!
   * Given a polygon and to of its vertices u and v, count the number of reflex
   * vertices between u and v, and between v and u (not including u and v
   * themselves), and return the lesser quantity.
   * \param vec A vector defining counterclockwise-oriented polygon.
   * \param v_ind The index of the vertex v.
   * \param u_ind The index of the vertex u.
   * \return The minimal number of reflex vertices between u and v.
   */
  unsigned int _count_reflex_vertices (const Point_vector_2& vec,
                                       unsigned int u_ind,
                                       unsigned int v_ind) const
  {
    if (u_ind == v_ind) 
      return (0);

    unsigned int    count1 = 0, count2 = 0;
    unsigned int    k;

    // Make sure that v_ind > u_ind (if necessary, swap indices).
    if (u_ind > v_ind)
    {
      k = u_ind;
      u_ind = v_ind;
      v_ind = k;
    }
                
    // Compute how many reflex vertices there are between u and v (not
    // including v itself).
    count1 = (vec[v_ind].reflex_count - vec[u_ind].reflex_count);

    if (vec[v_ind].is_reflex) 
      count1--;
   
    // Compute how many reflex vertices there are between v and u (not
    // including u itself).
    count2 = (vec[vec.size() - 1].reflex_count - vec[v_ind].reflex_count) + 
             vec[u_ind].reflex_count;

    if (vec[u_ind].is_reflex) 
      count2--;

    // Return the smaller value.
    if (count1 < count2) 
      return count1;
    else
      return count2;
  }
        
  /*!
   * Given a non-convex polygon, try to find a diagonal connecting to mutually
   * visible reflex vertices u and v such that the number of reflex vertices
   * between u and v is minimized.
   * \param vec A vector defining counterclockwise-oriented polygon.
   * \param v_ind Output: The index of the vertex v.
   * \param u_ind Output: The index of the vertex u.
   * \return Whether a diagonal was found.
   */
  bool _compute_min_diagonal (Point_vector_2& vec,
                              unsigned int& u_ind, unsigned int& v_ind) const
  {
    unsigned int          ind1, ind2;
    Reflex_zone_position  zone_pos;
    unsigned int          curr_count;
    unsigned int          min_count = 0;
    bool                  found = false;
    unsigned int          dist;

    // Let the distance between pairs of vertices we try vary between 2 and
    // half the size of the polygon.
    for (dist = 2; dist < (vec.size() + 1) / 2; dist++)
    {
      // Traverse the polygon vertices.
      for (ind1 = 0; ind1 < vec.size(); ind1++)
      {
        if (! vec[ind1].is_reflex)
          // Ignore convex vertices.        
          continue;

        ind2 = (ind1 + dist) % vec.size();

        if (! vec[ind2].is_reflex)
          // Ignore convex vertices.
          continue;

        // Count the number of reflex vertices between the current pair of
        // reflex vertices.
        curr_count = _count_reflex_vertices (vec, ind1, ind2);

        // If we are not below the minimal, stop checking.
        if (found && min_count < curr_count)
          continue;

        // Check whether the two vertices lie in the reflex zone of one
        // another. If so, the diagonal between them splits each of the angles
        // of u and v into two angles than are not greater than 180 degrees.
        zone_pos = _query_reflex_zone (vec, ind1, vec[ind2].point);

        if ((zone_pos != INSIDE_ZONE) && (zone_pos != ON_ZONE_BOUNDARY))
          continue;

        zone_pos = _query_reflex_zone (vec, ind2, vec[ind1].point);

        if ((zone_pos != INSIDE_ZONE) && (zone_pos != ON_ZONE_BOUNDARY))
          continue;

        // Check whether the two vertices are mutually visible.
        if (! _is_visible (vec, ind1, ind2))
          continue;

        // If we passed all the various tests and reached here, we can update
        // the minimal count.
        min_count = curr_count;
        u_ind = ind1;
        v_ind = ind2;
        found = true;
      }
    }

    // Return whether a diagonal has been found.
    return (found);
  }

  /*!
   * Split the given polygon by the given diagonal.
   * \param vec A vector defining counterclockwise-oriented polygon.
   * \param ind1 The index of the first diagonal end-vertex.
   * \param ind2 The index of the second diagonal end-vertex.
   * \param check_ends Should we check for convexity near ind1 and ind2.
   * \param vec1 Output: The first output polygon.
   * \param vec2 Output: The second output polygon.
   */
  void _split_by_diagonal (const Point_vector_2& vec,
                           unsigned int ind1, unsigned int ind2,
                           bool check_ends,
                           Point_vector_2& vec1,
                           Point_vector_2& vec2) const
  {
    unsigned int      i1, i2;
    Indices_iterator  iter;
    unsigned int      reflex_count;

    // Make sure that the index ind2 is greater than ind1.
    if (ind1 > ind2)
    {
      i1 = ind1;
      ind1 = ind2;
      ind2 = i1;
    }
                
    // Resize the output vectors.
    vec1.resize (ind2 - ind1 + 1);
    vec2.resize (vec.size() - (ind2 - ind1 - 1));
                
    // Construct the first output polygon. Notice we traverse the polygon in
    // a counterclockwise direction from ind1 to ind2 and back.
    reflex_count = 0;

    for (i1 = ind1; i1 <= ind2; i1++)
    {
      // Copy the point.
      vec1[i1 - ind1].point = vec[i1].point;

      // Clear the visible vertices list.
      vec1[i1-ind1].visible.clear();
      vec1[i1-ind1].non_visible.clear();

      if (i1 == ind1)
      {
        if (check_ends)
        {
          // Check the turn around ind1.
          vec1[i1-ind1].is_reflex = 
            (f_orientation (vec[ind2].point,
                            vec[ind1].point,
                            vec[_vec_succ(vec, ind1)].point) == RIGHT_TURN);
        }
        else
        {
          // The two diagonal end-vertices are not reflex any more.
          vec1[i1-ind1].is_reflex = false;
        }
      }
      else if (i1 == ind2)
      {
        if (check_ends)
        {
          // Check the turn around ind2.
          vec1[i1-ind1].is_reflex = 
            (f_orientation (vec[_vec_pred(vec, ind2)].point,
                            vec[ind2].point,
                            vec[ind1].point) == RIGHT_TURN);
        }
        else
        {
          // The two diagonal end-vertices are not reflex any more.
          vec1[i1-ind1].is_reflex = false;
        }
      }
      else
      {
        // Copy the reflexity flag.
        vec1[i1-ind1].is_reflex = vec[i1].is_reflex;

        // Set the visible vertices list.
        for (iter = vec[i1].visible.begin(); 
             iter != vec[i1].visible.end(); ++iter)
        {
          if ((*iter > ind1) && (*iter < ind2))
            vec1[i1-ind1].visible.push_back(*iter - ind1);
        }

        // Set the non-visible vertices list.
        for (iter = vec[i1].non_visible.begin(); 
             iter != vec[i1].non_visible.end(); ++iter)
        {
          if ((*iter > ind1) && (*iter < ind2))
            vec1[i1-ind1].non_visible.push_back(*iter - ind1);
        }
      }

      // Set the reflex count.
      if (vec1[i1-ind1].is_reflex)
        reflex_count++;

      vec1[i1-ind1].reflex_count = reflex_count;
    }
                
    // Construct the second output polygon. Notice we traverse the polygon in
    // a counterclockwise direction from ind2 to ind1 and back.
    reflex_count = 0;
    i2 = 0;
    i1 = ind2;

    // go ccw on all the vertices from 'ind2' to 'ind1'.
    while (i1 != (ind1+1))
    {
      // Copy the point.
      vec2[i2].point = vec[i1].point;

      // Clear the visible vertices list.
      vec2[i2].visible.clear();
      vec2[i2].non_visible.clear();


      if (i1 == ind1)
      {
        if (check_ends)
        {
          // Check the turn around ind1.
          vec2[i2].is_reflex = 
            (f_orientation (vec[_vec_pred(vec, ind1)].point,
                            vec[ind1].point,
                            vec[ind2].point) == RIGHT_TURN);
        }
        else
        {
          // The two diagonal end-vertices are not reflex any more.
          vec2[i2].is_reflex = false;
        }
      }
      else if (i1 == ind2)
      {
        if (check_ends)
        {
          // Check the turn around ind2.
          vec2[i2].is_reflex = 
            (f_orientation (vec[ind1].point,
                            vec[ind2].point,
                            vec[_vec_succ(vec, ind2)].point) == RIGHT_TURN);
        }
        else
        {
          // The two diagonal end-vertices are not reflex any more.
          vec2[i2].is_reflex = false;
        }
      }
      else
      {
        // Copy the reflexity flag.
        vec2[i2].is_reflex = vec[i1].is_reflex;
        
        // Set the visible vertices list.
        for (iter = vec[i1].visible.begin();
             iter != vec[i1].visible.end(); ++iter)
        {
          if (*iter > ind2)
          {
            vec2[i2].visible.push_back (*iter - ind2);
          }
          else if (*iter < ind1)
          {
            vec2[i2].visible.push_back (*iter + vec.size() - ind2);
          }
        }
        
        // Set the non-visible vertices list.
        for (iter = vec[i1].non_visible.begin();
             iter != vec[i1].non_visible.end(); ++iter)
        {
          if (*iter > ind2)
          {
            vec2[i2].non_visible.push_back (*iter - ind2);
          }
          else if (*iter < ind1)
          {
            vec2[i2].non_visible.push_back (*iter + vec.size() - ind2);
          }
        }
      }

      // Set the reflex count.
      if (vec2[i2].is_reflex)
        reflex_count++;

      vec2[i2].reflex_count = reflex_count;
      
      // advance the indices.                        
      i1 = _vec_succ(vec, i1);
      i2++;
    }
    
    return;
  }

  /*!
   * Get the angle ratio created by the the bisection of the angle at the
   * reflex vertex v by the diagonal uv.
   * \param vec A vector defining counterclockwise-oriented polygon.
   * \param v_ind The index of the vertex v.
   * \param u_ind The index of the vertex u.
   * \return The ratio between the bisected angles.
   */
  double _angle_bisection_ratio (Point_vector_2 &vec, 
                                 unsigned int v_ind,
                                 unsigned int u_ind) const
  {
    const double    _2_PI = 6.2831853;

    // Get the points at u and v, as well as v's adjacencies and approximate
    // their coordinates. 
    const Point_2&  u_pt = vec[u_ind].point;
    const Point_2&  v_pt = vec[v_ind].point;
    const Point_2&  pred_pt = vec[_vec_pred(vec, v_ind)].point;
    const Point_2&  succ_pt = vec[_vec_succ(vec, v_ind)].point;
    const double    ux = CGAL::to_double (u_pt.x());
    const double    uy = CGAL::to_double (u_pt.y());
    const double    vx = CGAL::to_double (v_pt.x());
    const double    vy = CGAL::to_double (v_pt.y());
    const double    pred_x = CGAL::to_double (pred_pt.x());
    const double    pred_y = CGAL::to_double (pred_pt.y());
    const double    succ_x = CGAL::to_double (succ_pt.x());
    const double    succ_y = CGAL::to_double (succ_pt.y());

    // Compute the edge length and the diagonal length.
    const double    len_uv = ::sqrt((ux - vx) * (ux - vx) +
                                    (uy - vy) * (uy - vy));
    const double    len_pred = ::sqrt((pred_x - vx) * (pred_x - vx) +
                                      (pred_y - vy) * (pred_y - vy));
    const double    len_succ = ::sqrt((succ_x - vx) * (succ_x - vx) +
                                      (succ_y - vy) * (succ_y - vy));

    // Compute the angle a1 = <) (pred_pt, v_pt, u_pt):
    const double    cos_a1 = ((ux - vx) * (pred_x - vx) +
                              (uy - vy) * (pred_y - vy)) / (len_uv * len_pred);
    double          a1 = ::acos (cos_a1);
    
    if (f_orientation (pred_pt, v_pt, u_pt) == RIGHT_TURN)
      // The angle a1 is larger than 180 degree:
      a1 = _2_PI - a1;

    // Compute the angle a2 = <) (u_pt, v_pt, succ_pt):
    const double    cos_a2 = ((ux - vx) * (succ_x - vx) +
                              (uy - vy) * (succ_y - vy)) / (len_uv * len_succ);
    double          a2 = ::acos (cos_a2);

    if (f_orientation (u_pt, v_pt, succ_pt) == RIGHT_TURN)
      // The angle a1 is larger than 180 degree:
      a2 = _2_PI - a2;

    // Return the ratio of max(a1,a2)/min(a1,a2).
    if (a1 == 0 || a2 == 0)
      return (10000);

    if (a1 > a2)
      return (a1 / a2);
    else
      return (a2 / a1);
  }

  /*!
   * Perform an approximate angle-bisector decomposition, by locating a reflex
   * vertex and another vertex such that the diagonal between them is not
   * blocked, and such that it approximates the angle bisector of the reflex
   * vertex.
   * \param vec A vector defining counterclockwise-oriented polygon.
   * \param reflex_ind Output: The index of the reflex vertex whose angle we
   *                           wish to bisect.
   * \param other_ind Output: The index of the other polygon vertex.
   */
  void _approximate_angle_bisector (Point_vector_2& vec,
                                    unsigned int& reflex_ind,
                                    unsigned int& other_ind) const
  {
    unsigned int          ind1, ind2;
    double                curr_ratio;
    double                min_ratio = 0;
    bool                  found = false;
    unsigned int          dist;

    // Let the distance between pairs of vertices we try vary between 2 and
    // the size of the polygon - 2.
    for (dist = 2; dist <= vec.size() - 2; dist++)
    {
      // Traverse the polygon vertices.
      for (ind1 = 0; ind1 < vec.size(); ind1++)
      {
        if (! vec[ind1].is_reflex)
          // Ignore convex vertices.        
          continue;

        ind2 = (ind1 + dist) % vec.size();

        // Get the current ratio between the two angles the current
        // diagonal splits around vec[ind1].
        curr_ratio = _angle_bisection_ratio (vec, ind1, ind2);

        // If we are not below the minimal, stop checking.
        if (found && min_ratio < curr_ratio)
          continue;

        // Check whether the two vertices are mutually visible.
        if (! _is_visible (vec, ind1, ind2))
          continue;

        // If we passed all the various tests and reached here, we can update
        // the minimal angle difference.
        min_ratio = curr_ratio;
        reflex_ind = ind1;
        other_ind = ind2;
        found = true;
      }
    }

    // Return whether a diagonal has been found.
    CGAL_assertion (found);
    return;
  }

  /*!
   * Convert the point-info vector into a polygon and send it as an output.
   * \param vec A vector defining counterclockwise-oriented convex polygon.
   * \param oi The output iterator.
   * \return A past-the-end iterator for the sub-polygons.
   */
  template <class OutputIterator>
  OutputIterator _output_polygon (const Point_vector_2& vec,
                                  OutputIterator oi) const
  {
    const unsigned int    n = vec.size();
    Polygon_2             pgn;
    unsigned int          k;

    for (k = 0; k < n; k++)
      pgn.push_back (vec[k].point);

    *oi = pgn;
    ++oi;

    return (oi);
  }
};

} //namespace CGAL

#endif