1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
// Copyright (c) 2003-2008 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Circular_kernel_3/include/CGAL/global_functions_spherical_kernel_3.h $
// $Id: global_functions_spherical_kernel_3.h 67117 2012-01-13 18:14:48Z lrineau $
//
// Author(s) : Monique Teillaud, Sylvain Pion, Pedro Machado,
// Sebastien Loriot, Julien Hazebrouck, Damien Leroy
// Partially supported by the IST Programme of the EU as a Shared-cost
// RTD (FET Open) Project under Contract No IST-2000-26473
// (ECG - Effective Computational Geometry for Curves and Surfaces)
// and a STREP (FET Open) Project under Contract No IST-006413
// (ACS -- Algorithms for Complex Shapes)
#ifndef CGAL_SPHERICAL_KERNEL_GLOBAL_FUNCTIONS_CIRCULAR_KERNEL_3_H
#define CGAL_SPHERICAL_KERNEL_GLOBAL_FUNCTIONS_CIRCULAR_KERNEL_3_H
// global functions
namespace CGAL {
template <class SK>
Circular_arc_point_3<SK>
x_extremal_point(const Circle_3<SK> & c, bool i)
{
return SphericalFunctors::x_extremal_point<SK>(c,i);
}
template <class SK, class OutputIterator>
OutputIterator
x_extremal_points(const Circle_3<SK> & c, OutputIterator res)
{
return SphericalFunctors::x_extremal_points<SK>(c,res);
}
template <class SK>
Circular_arc_point_3<SK>
y_extremal_point(const Circle_3<SK> & c, bool i)
{
return SphericalFunctors::y_extremal_point<SK>(c,i);
}
template <class SK, class OutputIterator>
OutputIterator
y_extremal_points(const Circle_3<SK> & c, OutputIterator res)
{
return SphericalFunctors::y_extremal_points<SK>(c,res);
}
template <class SK>
Circular_arc_point_3<SK>
z_extremal_point(const Circle_3<SK> & c, bool i)
{
return SphericalFunctors::z_extremal_point<SK>(c,i);
}
template <class SK, class OutputIterator>
OutputIterator
z_extremal_points(const Circle_3<SK> & c, OutputIterator res)
{
return SphericalFunctors::z_extremal_point<SK>(c,res);
}
template <class SK>
Circular_arc_point_3<SK>
x_extremal_point(const Sphere_3<SK> & c, bool i)
{
return SphericalFunctors::x_extremal_point<SK>(c,i);
}
template <class SK, class OutputIterator>
OutputIterator
x_extremal_points(const Sphere_3<SK> & c, OutputIterator res)
{
return SphericalFunctors::x_extremal_points<SK>(c,res);
}
template <class SK>
Circular_arc_point_3<SK>
y_extremal_point(const Sphere_3<SK> & c, bool i)
{
return SphericalFunctors::y_extremal_point<SK>(c,i);
}
template <class SK, class OutputIterator>
OutputIterator
y_extremal_points(const Sphere_3<SK> & c, OutputIterator res)
{
return SphericalFunctors::y_extremal_points<SK>(c,res);
}
template <class SK>
Circular_arc_point_3<SK>
z_extremal_point(const Sphere_3<SK> & c, bool i)
{
return SphericalFunctors::z_extremal_point<SK>(c,i);
}
template <class SK, class OutputIterator>
OutputIterator
z_extremal_points(const Sphere_3<SK> & c, OutputIterator res)
{
return SphericalFunctors::z_extremal_points<SK>(c,res);
}
template< class CK >
inline
CGAL::Comparison_result
compare_x(const Circular_arc_point_3<CK> &p, const Circular_arc_point_3<CK> &q)
{
return CK().compare_x_3_object()(p, q);
}
template< class CK >
inline
CGAL::Comparison_result
compare_y(const Circular_arc_point_3<CK> &p, const Circular_arc_point_3<CK> &q)
{
return CK().compare_y_3_object()(p, q);
}
template< class CK >
inline
CGAL::Comparison_result
compare_z(const Circular_arc_point_3<CK> &p, const Circular_arc_point_3<CK> &q)
{
return CK().compare_z_3_object()(p, q);
}
template< class CK >
inline
CGAL::Comparison_result
compare_xy(const Circular_arc_point_3<CK> &p, const Circular_arc_point_3<CK> &q)
{
return CK().compare_xy_3_object()(p, q);
}
template< class CK >
inline
CGAL::Comparison_result
compare_xyz(const Circular_arc_point_3<CK> &p, const Circular_arc_point_3<CK> &q)
{
return CK().compare_xyz_3_object()(p, q);
}
template <class SK>
CGAL::Circle_type
classify(const Circle_3<SK>& c,const Sphere_3<SK> & s)
{
return SphericalFunctors::classify_circle_3<SK>(c,s);
}
template <class SK>
bool
is_theta_monotone(const Circular_arc_3<SK>& arc,const Sphere_3<SK> & s)
{
return SphericalFunctors::is_theta_monotone_3<SK>(arc,s);
}
template <class SK>
CGAL::Comparison_result
compare_theta(const Circular_arc_point_3<SK>& pt1,const Circular_arc_point_3<SK>& pt2,const Sphere_3<SK>& sphere)
{
return SphericalFunctors::compare_theta_of_pts<SK>(pt1,pt2,sphere);
}
template <class SK>
CGAL::Comparison_result
compare_theta(const Circular_arc_point_3<SK>& pt,const Vector_3<SK>& v,const Sphere_3<SK>& sphere)
{
return SphericalFunctors::compare_theta_pt_vector<SK>(pt,v,sphere);
}
template <class SK>
CGAL::Comparison_result
compare_theta(const Vector_3<SK>& v,const Circular_arc_point_3<SK>& pt,const Sphere_3<SK>& sphere)
{
return CGAL::opposite(SphericalFunctors::compare_theta_pt_vector<SK>(pt,v,sphere));
}
template <class SK>
CGAL::Comparison_result
compare_theta(const Vector_3<SK>&m1,const Vector_3<SK>&m2)
{ return SphericalFunctors::compare_theta_vectors<SK>(m1,m2); }
template <class SK>
CGAL::Comparison_result
compare_theta_z(const Circular_arc_point_3<SK>& pt1,const Circular_arc_point_3<SK>& pt2,const Sphere_3<SK>& sphere)
{
return SphericalFunctors::compare_theta_z<SK>(pt1,pt2,sphere);
}
template <class SK>
typename SK::Circular_arc_point_3
theta_extremal_point(const Circle_3<SK>& circle,const Sphere_3<SK>& sphere,bool is_smallest)
{
return SphericalFunctors::theta_extremal_point<SK>(circle,sphere,is_smallest);
}
template <class SK,class OutputIterator>
OutputIterator
theta_extremal_points(const Circle_3<SK>& circle,const Sphere_3<SK>& sphere,OutputIterator out_it)
{
return SphericalFunctors::theta_extremal_points<SK>(circle,sphere,out_it);
}
} //namespace CGAL
#endif // CGAL_SPHERICAL_KERNEL_GLOBAL_FUNCTIONS_CIRCULAR_KERNEL_3_H
|