1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
// Copyright (c) 2009 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Intersections_3/include/CGAL/internal/Intersections_3/Triangle_3_Line_3_intersection.h $
// $Id: Triangle_3_Line_3_intersection.h 67093 2012-01-13 11:22:39Z lrineau $
//
//
// Author(s) : Stéphane Tayeb
//
// Note : This implementation is adapted from Triangle_3_Line_3_do_intersect.h.
#ifndef CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_LINE_3_INTERSECTION_H
#define CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_LINE_3_INTERSECTION_H
#include <CGAL/kernel_basic.h>
#include <CGAL/intersections.h>
namespace CGAL {
namespace internal {
template <class K>
typename K::Point_3
t3l3_intersection_coplanar_aux(const typename K::Line_3& l,
const typename K::Point_3& a,
const typename K::Point_3& b,
const K& k)
{
// Returns the intersection point between line l and segment [a,b]
//
// preconditions:
// + l,a,b are coplanar
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::FT FT;
typename K::Construct_vector_3 vector =
k.construct_vector_3_object();
typename K::Construct_cross_product_vector_3 cross_product =
k.construct_cross_product_vector_3_object();
typename K::Compute_scalar_product_3 scalar_product =
k.compute_scalar_product_3_object();
typename K::Compute_squared_length_3 sq_length =
k.compute_squared_length_3_object();
const Point_3& p = l.point();
const Vector_3& v = l.to_vector();
const Vector_3 ab = vector(a,b);
const Vector_3 pa = vector(p,a);
const Vector_3 pa_ab = cross_product(pa,ab);
const Vector_3 v_ab = cross_product(v,ab);
const FT t = scalar_product(pa_ab,v_ab) / sq_length(v_ab);
return ( p + t*v );
}
template <class K>
Object
t3l3_intersection_coplanar_aux(const typename K::Point_3& a,
const typename K::Point_3& b,
const typename K::Point_3& c,
const typename K::Line_3& l,
const bool negative_side,
const K& k)
{
// This function is designed to clip pq into the triangle abc.
// Point configuration should be as follows
//
// |
// | +b
// |
// +c | +a
// |
// | l
//
// We know that c is isolated on the negative side of pq
typedef typename K::Point_3 Point_3;
typename K::Construct_segment_3 segment =
k.construct_segment_3_object();
// Let's get the intersection points
const Point_3 l_bc = t3l3_intersection_coplanar_aux(l,b,c,k);
const Point_3 l_ca = t3l3_intersection_coplanar_aux(l,c,a,k);
if ( negative_side )
return make_object(segment(l_bc, l_ca));
else
return make_object(segment(l_ca, l_bc));
}
template <class K>
Object
intersection_coplanar(const typename K::Triangle_3 &t,
const typename K::Line_3 &l,
const K & k )
{
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(l) ) ;
typedef typename K::Point_3 Point_3;
typename K::Construct_point_on_3 point_on =
k.construct_point_on_3_object();
typename K::Construct_vertex_3 vertex_on =
k.construct_vertex_3_object();
typename K::Coplanar_orientation_3 coplanar_orientation =
k.coplanar_orientation_3_object();
typename K::Construct_segment_3 segment =
k.construct_segment_3_object();
const Point_3 & p = point_on(l,0);
const Point_3 & q = point_on(l,1);
const Point_3 & A = vertex_on(t,0);
const Point_3 & B = vertex_on(t,1);
const Point_3 & C = vertex_on(t,2);
int k0 = 0;
int k1 = 1;
int k2 = 2;
// Determine the orientation of the triangle in the common plane
if (coplanar_orientation(A,B,C) != POSITIVE)
{
// The triangle is not counterclockwise oriented
// swap two vertices.
std::swap(k1,k2);
}
const Point_3& a = vertex_on(t,k0);
const Point_3& b = vertex_on(t,k1);
const Point_3& c = vertex_on(t,k2);
// Test whether the line intersects the triangle in the common plane
const Orientation pqa = coplanar_orientation(p,q,a);
const Orientation pqb = coplanar_orientation(p,q,b);
const Orientation pqc = coplanar_orientation(p,q,c);
switch ( pqa ) {
// -----------------------------------
// pqa POSITIVE
// -----------------------------------
case POSITIVE:
switch ( pqb ) {
case POSITIVE:
switch ( pqc ) {
case POSITIVE:
// the triangle lies in the positive halfspace
// defined by the segment's supporting line.
return Object();
case NEGATIVE:
// c is isolated on the negative side
return t3l3_intersection_coplanar_aux(a,b,c,l,true,k);
case COLLINEAR:
return make_object(c);
}
case NEGATIVE:
if ( POSITIVE == pqc )
// b is isolated on the negative side
return t3l3_intersection_coplanar_aux(c,a,b,l,true,k);
else
// a is isolated on the positive side (here mb c could be use as
// an endpoint instead of computing an intersection is some cases)
return t3l3_intersection_coplanar_aux(b,c,a,l,false,k);
case COLLINEAR:
switch ( pqc ) {
case POSITIVE:
return make_object(b);
case NEGATIVE:
// a is isolated on the positive side (here mb b could be use as
// an endpoint instead of computing an intersection)
return t3l3_intersection_coplanar_aux(b,c,a,l,false,k);
case COLLINEAR:
// b,c,p,q are aligned, [p,q]&[b,c] have the same direction
return make_object(segment(b,c));
}
default: // should not happen.
CGAL_error();
return Object();
}
// -----------------------------------
// pqa NEGATIVE
// -----------------------------------
case NEGATIVE:
switch ( pqb ) {
case POSITIVE:
if ( POSITIVE == pqc )
// a is isolated on the negative side
return t3l3_intersection_coplanar_aux(b,c,a,l,true,k);
else
// b is isolated on the positive side (here mb c could be use as
// an endpoint instead of computing an intersection, in some cases)
return t3l3_intersection_coplanar_aux(c,a,b,l,false,k);
case NEGATIVE:
switch ( pqc ) {
case POSITIVE:
// c is isolated on the positive side
return t3l3_intersection_coplanar_aux(a,b,c,l,false,k);
case NEGATIVE:
// the triangle lies in the negative halfspace
// defined by the segment's supporting line.
return Object();
case COLLINEAR:
return make_object(c);
}
case COLLINEAR:
switch ( pqc ) {
case POSITIVE:
// a is isolated on the negative side (here mb b could be use as
// an endpoint instead of computing an intersection)
return t3l3_intersection_coplanar_aux(b,c,a,l,true,k);
case NEGATIVE:
return make_object(b);
case COLLINEAR:
// b,c,p,q are aligned, [p,q]&[c,b] have the same direction
return make_object(segment(c,b));
}
default: // should not happen.
CGAL_error();
return Object();
}
// -----------------------------------
// pqa COLLINEAR
// -----------------------------------
case COLLINEAR:
switch ( pqb ) {
case POSITIVE:
switch ( pqc ) {
case POSITIVE:
return make_object(a);
case NEGATIVE:
// b is isolated on the positive side (here mb a could be use as
// an endpoint instead of computing an intersection)
return t3l3_intersection_coplanar_aux(c,a,b,l,false,k);
case COLLINEAR:
// a,c,p,q are aligned, [p,q]&[c,a] have the same direction
return make_object(segment(c,a));
}
case NEGATIVE:
switch ( pqc ) {
case POSITIVE:
// b is isolated on the negative side (here mb a could be use as
// an endpoint instead of computing an intersection)
return t3l3_intersection_coplanar_aux(c,a,b,l,true,k);
case NEGATIVE:
return make_object(a);
case COLLINEAR:
// a,c,p,q are aligned, [p,q]&[a,c] have the same direction
return make_object(segment(a,c));
}
case COLLINEAR:
switch ( pqc ) {
case POSITIVE:
// a,b,p,q are aligned, [p,q]&[a,b] have the same direction
return make_object(segment(a,b));
case NEGATIVE:
// a,b,p,q are aligned, [p,q]&[b,a] have the same direction
return make_object(segment(b,a));
case COLLINEAR:
// case pqc == COLLINEAR is impossible since the triangle is
// assumed to be non flat
CGAL_error();
return Object();
}
default: // should not happen.
CGAL_error();
return Object();
}
default:// should not happen.
CGAL_error();
return Object();
}
}
template <class K>
inline
Object
t3l3_intersection_aux(const typename K::Triangle_3 &t,
const typename K::Line_3 &l,
const K& k)
{
typename K::Intersect_3 intersection =
k.intersect_3_object();
Object obj = intersection(l,t.supporting_plane());
// Intersection should be a point (because of orientation test done before)
if ( obj.is<typename K::Line_3>() )
return Object();
else
return obj;
}
template <class K>
Object
intersection(const typename K::Triangle_3 &t,
const typename K::Line_3 &l,
const K& k)
{
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(l) ) ;
typedef typename K::Point_3 Point_3;
typename K::Construct_point_on_3 point_on =
k.construct_point_on_3_object();
typename K::Construct_vertex_3 vertex_on =
k.construct_vertex_3_object();
typename K::Orientation_3 orientation =
k.orientation_3_object();
const Point_3 & a = vertex_on(t,0);
const Point_3 & b = vertex_on(t,1);
const Point_3 & c = vertex_on(t,2);
const Point_3 & p = point_on(l,0);
const Point_3 & q = point_on(l,1);
if ( ( orientation(a,b,c,p) != COPLANAR )
|| ( orientation(a,b,c,q) != COPLANAR ) )
{
const Orientation pqab = orientation(p,q,a,b);
const Orientation pqbc = orientation(p,q,b,c);
switch ( pqab ) {
case POSITIVE:
if ( pqbc != NEGATIVE && orientation(p,q,c,a) != NEGATIVE )
return t3l3_intersection_aux(t,l,k);
else
return Object();
case NEGATIVE:
if ( pqbc != POSITIVE && orientation(p,q,c,a) != POSITIVE )
return t3l3_intersection_aux(t,l,k);
else
return Object();
case COPLANAR:
switch ( pqbc ) {
case POSITIVE:
if ( orientation(p,q,c,a) != NEGATIVE )
return t3l3_intersection_aux(t,l,k);
else
return Object();
case NEGATIVE:
if ( orientation(p,q,c,a) != POSITIVE )
return t3l3_intersection_aux(t,l,k);
else
return Object();
case COPLANAR: // pqa or pqb or pqc are collinear
return t3l3_intersection_aux(t,l,k);
default: // should not happen.
CGAL_error();
return Object();
}
default: // should not happen.
CGAL_error();
return Object();
}
}
// Coplanar case
return intersection_coplanar(t,l,k);
}
template <class K>
Object
intersection(const typename K::Line_3 &l,
const typename K::Triangle_3 &t,
const K& k)
{
return internal::intersection(t,l,k);
}
} // end namespace internal
template <class K>
inline
Object
intersection(const Triangle_3<K> &t, const Line_3<K> &l)
{
return typename K::Intersect_3()(t,l);
}
template <class K>
inline
Object
intersection(const Line_3<K> &l, const Triangle_3<K> &t)
{
return typename K::Intersect_3()(t,l);
}
} // end namespace CGAL
#endif // CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_LINE_3_INTERSECTION_H
|