1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
// Copyright (c) 2009 GeometryFactory (France), INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Intersections_3/include/CGAL/internal/Intersections_3/Triangle_3_Ray_3_intersection.h $
// $Id: Triangle_3_Ray_3_intersection.h 67093 2012-01-13 11:22:39Z lrineau $
//
//
// Author(s) : Laurent Rineau, Stephane Tayeb
//
// Note: This implementation is adapted from Triangle_3_Ray_3_do_intersect.h.
#ifndef CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_RAY_3_INTERSECTION_H
#define CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_RAY_3_INTERSECTION_H
#include <CGAL/kernel_basic.h>
#include <CGAL/intersections.h>
namespace CGAL {
namespace internal {
template <class K>
typename K::Point_3
t3r3_intersection_coplanar_aux(const typename K::Point_3& p,
const typename K::Vector_3& v,
const typename K::Point_3& a,
const typename K::Point_3& b,
const K& k)
{
// Returns the intersection point between line (p,v) and line (a,b)
//
// preconditions:
// + p,v,a,b are coplanar
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::FT FT;
typename K::Construct_vector_3 vector =
k.construct_vector_3_object();
typename K::Construct_cross_product_vector_3 cross_product =
k.construct_cross_product_vector_3_object();
typename K::Compute_scalar_product_3 scalar_product =
k.compute_scalar_product_3_object();
typename K::Compute_squared_length_3 sq_length =
k.compute_squared_length_3_object();
const Vector_3 ab = vector(a,b);
const Vector_3 pa = vector(p,a);
const Vector_3 pa_ab = cross_product(pa,ab);
const Vector_3 v_ab = cross_product(v,ab);
const FT t = scalar_product(pa_ab,v_ab) / sq_length(v_ab);
return ( p + t*v );
}
template <class K>
Object
t3r3_intersection_coplanar_aux(const typename K::Point_3& a,
const typename K::Point_3& b,
const typename K::Point_3& c,
const typename K::Ray_3& r,
const bool negative_side,
const K& k)
{
// This function is designed to clip r into the triangle abc.
// Point configuration should be as follows
//
//
// p+ +b
// |
// +c | +a
// |
// |r
//
// We know that c is isolated on the negative side of r
// but we don't know p position wrt [bc]&[ca]
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typename K::Coplanar_orientation_3 coplanar_orientation =
k.coplanar_orientation_3_object();
typename K::Construct_segment_3 segment =
k.construct_segment_3_object();
typename K::Construct_point_on_3 point_on =
k.construct_point_on_3_object();
const Point_3& p = point_on(r,0);
// A ray is not symetric, 2 cases depending on isolated side of c
Orientation cap = negative_side ? coplanar_orientation(c,a,p)
: coplanar_orientation(b,c,p);
switch ( cap ) {
case NEGATIVE:
// p is bellow [c,a]
return Object();
case COLLINEAR:
return make_object(p);
case POSITIVE:
{
// Compute the intersection points between ray and [b,c],[c,a]
Vector_3 v = r.to_vector();
// Get intersection point at p side
Point_3 p_side_end_point(p);
Point_3 q_side_end_point;
// A ray is not symetric, 2 cases depending on isolated side of c
if ( negative_side )
{
if ( NEGATIVE == coplanar_orientation(b,c,p) )
p_side_end_point = t3r3_intersection_coplanar_aux(p,v,b,c,k);
// Get other end point (always intersection computation on the unbounded
// side of the ray)
q_side_end_point = t3r3_intersection_coplanar_aux(p,v,c,a,k);
}
else
{
if ( NEGATIVE == coplanar_orientation(c,a,p) )
p_side_end_point = t3r3_intersection_coplanar_aux(p,v,c,a,k);
// Get other end point (always intersection computation on the unbounded
// side of the ray)
q_side_end_point = t3r3_intersection_coplanar_aux(p,v,b,c,k);
}
// Build result
return make_object(segment(p_side_end_point, q_side_end_point));
}
default: // should not happen.
CGAL_error();
return Object();
}
CGAL_error();
return Object();
}
template <class K>
Object
intersection_coplanar(const typename K::Triangle_3 &t,
const typename K::Ray_3 &r,
const K & k )
{
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(r) ) ;
typedef typename K::Point_3 Point_3;
typename K::Construct_point_on_3 point_on =
k.construct_point_on_3_object();
typename K::Construct_vertex_3 vertex_on =
k.construct_vertex_3_object();
typename K::Coplanar_orientation_3 coplanar_orientation =
k.coplanar_orientation_3_object();
typename K::Construct_segment_3 segment =
k.construct_segment_3_object();
typename K::Collinear_are_ordered_along_line_3 collinear_ordered =
k.collinear_are_ordered_along_line_3_object();
const Point_3 & p = point_on(r,0);
const Point_3 & q = point_on(r,1);
const Point_3 & A = vertex_on(t,0);
const Point_3 & B = vertex_on(t,1);
const Point_3 & C = vertex_on(t,2);
int k0 = 0;
int k1 = 1;
int k2 = 2;
// Determine the orientation of the triangle in the common plane
if (coplanar_orientation(A,B,C) != POSITIVE)
{
// The triangle is not counterclockwise oriented
// swap two vertices.
std::swap(k1,k2);
}
const Point_3& a = vertex_on(t,k0);
const Point_3& b = vertex_on(t,k1);
const Point_3& c = vertex_on(t,k2);
// Test whether the ray's supporting line intersects the
// triangle in the common plane
const Orientation pqa = coplanar_orientation(p,q,a);
const Orientation pqb = coplanar_orientation(p,q,b);
const Orientation pqc = coplanar_orientation(p,q,c);
switch ( pqa ) {
// -----------------------------------
// pqa POSITIVE
// -----------------------------------
case POSITIVE:
switch ( pqb ) {
case POSITIVE:
switch ( pqc ) {
case POSITIVE:
// the triangle lies in the positive halfspace
// defined by the segment's supporting line.
return Object();
case NEGATIVE:
// c is isolated on the negative side
return t3r3_intersection_coplanar_aux(a,b,c,r,true,k);
case COLLINEAR:
// p,q,c are collinear
if ( collinear_ordered(p,c,q) || collinear_ordered(p,q,c) )
return make_object(c);
else
return Object();
}
case NEGATIVE:
if ( POSITIVE == pqc )
// b is isolated on the negative side
return t3r3_intersection_coplanar_aux(c,a,b,r,true,k);
else
// a is isolated on the positive side (here mb c could be use as
// an endpoint instead of computing an intersection is some cases)
return t3r3_intersection_coplanar_aux(b,c,a,r,false,k);
case COLLINEAR:
switch ( pqc ) {
case POSITIVE:
// p,q,b are collinear
if ( collinear_ordered(p,b,q) || collinear_ordered(p,q,b) )
return make_object(b);
else
return Object();
case NEGATIVE:
// a is isolated on the positive side (here mb b could be use as
// an endpoint instead of computing an intersection)
return t3r3_intersection_coplanar_aux(b,c,a,r,false,k);
case COLLINEAR:
// b,c,p,q are aligned, [p,q]&[b,c] have the same direction
if ( collinear_ordered(p,b,c) )
return make_object(segment(b,c));
else
return make_object(segment(p,c));
}
default: // should not happen.
CGAL_error();
return Object();
}
// -----------------------------------
// pqa NEGATIVE
// -----------------------------------
case NEGATIVE:
switch ( pqb ) {
case POSITIVE:
if ( POSITIVE == pqc )
// a is isolated on the negative side
return t3r3_intersection_coplanar_aux(b,c,a,r,true,k);
else
// b is isolated on the positive side (here mb c could be use as
// an endpoint instead of computing an intersection, in some cases)
return t3r3_intersection_coplanar_aux(c,a,b,r,false,k);
case NEGATIVE:
switch ( pqc ) {
case POSITIVE:
// c is isolated on the positive side
return t3r3_intersection_coplanar_aux(a,b,c,r,false,k);
case NEGATIVE:
// the triangle lies in the negative halfspace
// defined by the segment's supporting line.
return Object();
case COLLINEAR:
// p,q,c are collinear
if ( collinear_ordered(p,c,q) || collinear_ordered(p,q,c) )
return make_object(c);
else
return Object();
}
case COLLINEAR:
switch ( pqc ) {
case POSITIVE:
// a is isolated on the negative side (here mb b could be use as
// an endpoint instead of computing an intersection)
return t3r3_intersection_coplanar_aux(b,c,a,r,true,k);
case NEGATIVE:
// p,q,b are collinear
if ( collinear_ordered(p,b,q) || collinear_ordered(p,q,b) )
return make_object(b);
else
return Object();
case COLLINEAR:
// b,c,p,q are aligned, [p,q]&[c,b] have the same direction
if ( collinear_ordered(p,c,b) )
return make_object(segment(c,b));
else
return make_object(segment(p,b));
}
default: // should not happen.
CGAL_error();
return Object();
}
// -----------------------------------
// pqa COLLINEAR
// -----------------------------------
case COLLINEAR:
switch ( pqb ) {
case POSITIVE:
switch ( pqc ) {
case POSITIVE:
// p,q,a are collinear
if ( collinear_ordered(p,a,q) || collinear_ordered(p,q,a) )
return make_object(a);
else
return Object();
case NEGATIVE:
// b is isolated on the positive side (here mb a could be use as
// an endpoint instead of computing an intersection)
return t3r3_intersection_coplanar_aux(c,a,b,r,false,k);
case COLLINEAR:
// a,c,p,q are aligned, [p,q]&[c,a] have the same direction
if ( collinear_ordered(p,c,a) )
return make_object(segment(c,a));
else
return make_object(segment(p,a));
}
case NEGATIVE:
switch ( pqc ) {
case POSITIVE:
// b is isolated on the negative side (here mb a could be use as
// an endpoint instead of computing an intersection)
return t3r3_intersection_coplanar_aux(c,a,b,r,true,k);
case NEGATIVE:
// p,q,a are collinear
if ( collinear_ordered(p,a,q) || collinear_ordered(p,q,a) )
return make_object(a);
else
return Object();
case COLLINEAR:
// a,c,p,q are aligned, [p,q]&[a,c] have the same direction
if ( collinear_ordered(p,a,c) )
return make_object(segment(a,c));
else
return make_object(segment(p,c));
}
case COLLINEAR:
switch ( pqc ) {
case POSITIVE:
// a,b,p,q are aligned, [p,q]&[a,b] have the same direction
if ( collinear_ordered(p,a,b) )
return make_object(segment(a,b));
else
return make_object(segment(p,b));
case NEGATIVE:
// a,b,p,q are aligned, [p,q]&[b,a] have the same direction
if ( collinear_ordered(p,b,a) )
return make_object(segment(b,a));
else
return make_object(segment(p,a));
case COLLINEAR:
// case pqc == COLLINEAR is impossible since the triangle is
// assumed to be non flat
CGAL_error();
return Object();
}
default: // should not happen.
CGAL_error();
return Object();
}
default:// should not happen.
CGAL_error();
return Object();
}
}
template <class K>
inline
Object
t3r3_intersection_aux(const typename K::Triangle_3 &t,
const typename K::Ray_3 &r,
const K& k)
{
typename K::Intersect_3 intersection =
k.intersect_3_object();
Object obj = intersection(r.supporting_line(),t.supporting_plane());
// Intersection should be a point (because of orientation test done before)
if ( obj.is<typename K::Line_3>() )
return Object();
else
return obj;
}
template <class K>
Object
intersection(const typename K::Triangle_3 &t,
const typename K::Ray_3 &r,
const K& k)
{
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
CGAL_kernel_precondition( ! k.is_degenerate_3_object()(r) ) ;
typedef typename K::Point_3 Point_3;
typename K::Construct_vertex_3 vertex_on =
k.construct_vertex_3_object();
typename K::Orientation_3 orientation =
k.orientation_3_object();
typename K::Construct_ray_3 ray =
k.construct_ray_3_object();
typename K::Construct_point_on_3 point_on =
k.construct_point_on_3_object();
const Point_3& a = vertex_on(t,0);
const Point_3& b = vertex_on(t,1);
const Point_3& c = vertex_on(t,2);
const Point_3& p = point_on(r,0);
const Point_3& q = point_on(r,1);
Point_3 d = point_on(ray(a,r.to_vector()),1);
const Orientation ray_direction = orientation(a,b,c,d);
const Orientation abcp = orientation(a,b,c,p);
switch ( abcp ) {
case POSITIVE:
switch ( ray_direction ) {
case POSITIVE:
// the ray lies in the positive open halfspaces defined by the
// triangle's supporting plane
return Object();
case NEGATIVE:
// The ray straddles the triangle's plane
// p sees the triangle in counterclockwise order
if ( orientation(p,q,a,b) != POSITIVE
&& orientation(p,q,b,c) != POSITIVE
&& orientation(p,q,c,a) != POSITIVE )
return t3r3_intersection_aux(t,r,k);
else
return Object();
case COPLANAR:
// The ray lie in a plane parallel to a,b,c support plane
return Object();
default: // should not happen.
CGAL_error();
return Object();
}
case NEGATIVE:
switch ( ray_direction ) {
case POSITIVE:
// The ray straddles the triangle's plane
// q sees the triangle in counterclockwise order
if ( orientation(q,p,a,b) != POSITIVE
&& orientation(q,p,b,c) != POSITIVE
&& orientation(q,p,c,a) != POSITIVE )
return t3r3_intersection_aux(t,r,k);
else
return Object();
case NEGATIVE:
// the ray lies in the negative open halfspaces defined by the
// triangle's supporting plane
return Object();
case COPLANAR:
// The ray lie in a plane parallel to a,b,c support plane
return Object();
default: // should not happen.
CGAL_error();
return Object();
}
case COPLANAR: // p belongs to the triangle's supporting plane
switch ( ray_direction ) {
case POSITIVE:
// q sees the triangle in counterclockwise order
if ( orientation(q,p,a,b) != POSITIVE
&& orientation(q,p,b,c) != POSITIVE
&& orientation(q,p,c,a) != POSITIVE )
return t3r3_intersection_aux(t,r,k);
else
return Object();
case NEGATIVE:
// q sees the triangle in clockwise order
if ( orientation(p,q,a,b) != POSITIVE
&& orientation(p,q,b,c) != POSITIVE
&& orientation(p,q,c,a) != POSITIVE )
return t3r3_intersection_aux(t,r,k);
else
return Object();
case COPLANAR:
// The ray lie in triangle supporting plane
return intersection_coplanar(t,r,k);
default: // should not happen.
CGAL_error();
return Object();
}
default: // should not happen.
CGAL_error();
return Object();
}
CGAL_error();
return Object();
}
template <class K>
Object
intersection(const typename K::Ray_3 &r,
const typename K::Triangle_3 &t,
const K& k)
{
return intersection(t, r, k);
}
} // end namespace internal
template <class K>
inline
Object
intersection(const Triangle_3<K> &t, const Ray_3<K> &r)
{
return typename K::Intersect_3()(t, r);
}
template <class K>
inline
Object
intersection(const Ray_3<K> &r, const Triangle_3<K> &t)
{
return typename K::Intersect_3()(t, r);
}
} // end namespace CGAL
#endif // CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_RAY_3_INTERSECTION_H
|