File: Triangle_3_Ray_3_intersection.h

package info (click to toggle)
cgal 4.0-5
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 65,068 kB
  • sloc: cpp: 500,870; ansic: 102,544; sh: 321; python: 92; makefile: 75; xml: 2
file content (603 lines) | stat: -rw-r--r-- 18,432 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
// Copyright (c) 2009  GeometryFactory (France), INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Intersections_3/include/CGAL/internal/Intersections_3/Triangle_3_Ray_3_intersection.h $
// $Id: Triangle_3_Ray_3_intersection.h 67093 2012-01-13 11:22:39Z lrineau $
//
//
// Author(s)     :  Laurent Rineau, Stephane Tayeb
//
// Note: This implementation is adapted from Triangle_3_Ray_3_do_intersect.h.

#ifndef CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_RAY_3_INTERSECTION_H
#define CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_RAY_3_INTERSECTION_H

#include <CGAL/kernel_basic.h>
#include <CGAL/intersections.h>

namespace CGAL {
namespace internal {


template <class K>
typename K::Point_3
t3r3_intersection_coplanar_aux(const typename K::Point_3& p,
                               const typename K::Vector_3& v,
                               const typename K::Point_3& a,
                               const typename K::Point_3& b,
                               const K& k)
{
  // Returns the intersection point between line (p,v) and line (a,b)
  //
  // preconditions:
  //   + p,v,a,b are coplanar

  typedef typename K::Point_3 Point_3;
  typedef typename K::Vector_3 Vector_3;
  typedef typename K::FT FT;

  typename K::Construct_vector_3 vector =
    k.construct_vector_3_object();

  typename K::Construct_cross_product_vector_3 cross_product =
    k.construct_cross_product_vector_3_object();

  typename K::Compute_scalar_product_3 scalar_product =
    k.compute_scalar_product_3_object();

  typename K::Compute_squared_length_3 sq_length =
    k.compute_squared_length_3_object();

  const Vector_3 ab = vector(a,b);
  const Vector_3 pa = vector(p,a);

  const Vector_3 pa_ab = cross_product(pa,ab);
  const Vector_3 v_ab = cross_product(v,ab);

  const FT t = scalar_product(pa_ab,v_ab) / sq_length(v_ab);

  return ( p + t*v );
}


template <class K>
Object
t3r3_intersection_coplanar_aux(const typename K::Point_3& a,
                               const typename K::Point_3& b,
                               const typename K::Point_3& c,
                               const typename K::Ray_3& r,
                               const bool negative_side,
                               const K& k)
{
  // This function is designed to clip r into the triangle abc.
  // Point configuration should be as follows
  //
  //
  //    p+    +b
  //     |
  //  +c |       +a
  //     |
  //     |r
  //
  // We know that c is isolated on the negative side of r
  // but we don't know p position wrt [bc]&[ca]

  typedef typename K::Point_3 Point_3;
  typedef typename K::Vector_3 Vector_3;

  typename K::Coplanar_orientation_3 coplanar_orientation =
    k.coplanar_orientation_3_object();

  typename K::Construct_segment_3 segment =
    k.construct_segment_3_object();

  typename K::Construct_point_on_3 point_on =
    k.construct_point_on_3_object();

  const Point_3& p = point_on(r,0);

  // A ray is not symetric, 2 cases depending on isolated side of c
  Orientation cap = negative_side ? coplanar_orientation(c,a,p)
                                  : coplanar_orientation(b,c,p);

  switch ( cap ) {

    case NEGATIVE:
      // p is bellow [c,a]
      return Object();

    case COLLINEAR:
      return make_object(p);

    case POSITIVE:
    {
      // Compute the intersection points between ray and [b,c],[c,a]
      Vector_3 v = r.to_vector();

      // Get intersection point at p side
      Point_3 p_side_end_point(p);
      Point_3 q_side_end_point;

      // A ray is not symetric, 2 cases depending on isolated side of c
      if ( negative_side )
      {
        if ( NEGATIVE == coplanar_orientation(b,c,p) )
          p_side_end_point = t3r3_intersection_coplanar_aux(p,v,b,c,k);

        // Get other end point (always intersection computation on the unbounded
        // side of the ray)
        q_side_end_point = t3r3_intersection_coplanar_aux(p,v,c,a,k);
      }
      else
      {
        if ( NEGATIVE == coplanar_orientation(c,a,p) )
          p_side_end_point = t3r3_intersection_coplanar_aux(p,v,c,a,k);

        // Get other end point (always intersection computation on the unbounded
        // side of the ray)
        q_side_end_point = t3r3_intersection_coplanar_aux(p,v,b,c,k);
      }

      // Build result
      return make_object(segment(p_side_end_point, q_side_end_point));
    }

    default: // should not happen.
      CGAL_error();
      return Object();
  }

  CGAL_error();
  return Object();
}


template <class K>
Object
intersection_coplanar(const typename K::Triangle_3 &t,
                      const typename K::Ray_3  &r,
                      const K & k )
{
  CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
  CGAL_kernel_precondition( ! k.is_degenerate_3_object()(r) ) ;

  typedef typename K::Point_3 Point_3;

  typename K::Construct_point_on_3 point_on =
    k.construct_point_on_3_object();

  typename K::Construct_vertex_3 vertex_on =
    k.construct_vertex_3_object();

  typename K::Coplanar_orientation_3 coplanar_orientation =
    k.coplanar_orientation_3_object();

  typename K::Construct_segment_3 segment =
    k.construct_segment_3_object();

  typename K::Collinear_are_ordered_along_line_3 collinear_ordered =
    k.collinear_are_ordered_along_line_3_object();


  const Point_3 & p = point_on(r,0);
  const Point_3 & q = point_on(r,1);

  const Point_3 & A = vertex_on(t,0);
  const Point_3 & B = vertex_on(t,1);
  const Point_3 & C = vertex_on(t,2);

  int k0 = 0;
  int k1 = 1;
  int k2 = 2;

  // Determine the orientation of the triangle in the common plane
  if (coplanar_orientation(A,B,C) != POSITIVE)
  {
    // The triangle is not counterclockwise oriented
    // swap two vertices.
    std::swap(k1,k2);
  }

  const Point_3& a = vertex_on(t,k0);
  const Point_3& b = vertex_on(t,k1);
  const Point_3& c = vertex_on(t,k2);

  // Test whether the ray's supporting line intersects the
  // triangle in the common plane
  const Orientation pqa = coplanar_orientation(p,q,a);
  const Orientation pqb = coplanar_orientation(p,q,b);
  const Orientation pqc = coplanar_orientation(p,q,c);

  switch ( pqa ) {
    // -----------------------------------
    // pqa POSITIVE
    // -----------------------------------
    case POSITIVE:
      switch ( pqb ) {
        case POSITIVE:
          switch ( pqc ) {
            case POSITIVE:
              // the triangle lies in the positive halfspace
              // defined by the segment's supporting line.
              return Object();

            case NEGATIVE:
              // c is isolated on the negative side
              return t3r3_intersection_coplanar_aux(a,b,c,r,true,k);

            case COLLINEAR:
              // p,q,c are collinear
              if ( collinear_ordered(p,c,q) || collinear_ordered(p,q,c) )
                return make_object(c);
              else
                return Object();
          }

        case NEGATIVE:
          if ( POSITIVE == pqc )
            // b is isolated on the negative side
            return t3r3_intersection_coplanar_aux(c,a,b,r,true,k);
          else
            // a is isolated on the positive side (here mb c could be use as
            // an endpoint instead of computing an intersection is some cases)
            return t3r3_intersection_coplanar_aux(b,c,a,r,false,k);

        case COLLINEAR:
          switch ( pqc ) {
            case POSITIVE:
              // p,q,b are collinear
              if ( collinear_ordered(p,b,q) || collinear_ordered(p,q,b) )
                return make_object(b);
              else
                return Object();

            case NEGATIVE:
              // a is isolated on the positive side (here mb b could be use as
              // an endpoint instead of computing an intersection)
              return t3r3_intersection_coplanar_aux(b,c,a,r,false,k);

            case COLLINEAR:
              // b,c,p,q are aligned, [p,q]&[b,c] have the same direction
              if ( collinear_ordered(p,b,c) )
                return make_object(segment(b,c));
              else
                return make_object(segment(p,c));
          }

        default: // should not happen.
          CGAL_error();
          return Object();
      }

    // -----------------------------------
    // pqa NEGATIVE
    // -----------------------------------
    case NEGATIVE:
      switch ( pqb ) {
        case POSITIVE:
          if ( POSITIVE == pqc )
            // a is isolated on the negative side
            return t3r3_intersection_coplanar_aux(b,c,a,r,true,k);
          else
            // b is isolated on the positive side (here mb c could be use as
            // an endpoint instead of computing an intersection, in some cases)
            return t3r3_intersection_coplanar_aux(c,a,b,r,false,k);

        case NEGATIVE:
          switch ( pqc ) {
            case POSITIVE:
              // c is isolated on the positive side
              return t3r3_intersection_coplanar_aux(a,b,c,r,false,k);

            case NEGATIVE:
              // the triangle lies in the negative halfspace
              // defined by the segment's supporting line.
              return Object();

            case COLLINEAR:
              // p,q,c are collinear
              if ( collinear_ordered(p,c,q) || collinear_ordered(p,q,c) )
                return make_object(c);
              else
                return Object();
          }

        case COLLINEAR:
          switch ( pqc ) {
            case POSITIVE:
              // a is isolated on the negative side (here mb b could be use as
              // an endpoint instead of computing an intersection)
              return t3r3_intersection_coplanar_aux(b,c,a,r,true,k);

            case NEGATIVE:
              // p,q,b are collinear
              if ( collinear_ordered(p,b,q) || collinear_ordered(p,q,b) )
                return make_object(b);
              else
                return Object();

            case COLLINEAR:
              // b,c,p,q are aligned, [p,q]&[c,b] have the same direction
              if ( collinear_ordered(p,c,b) )
                return make_object(segment(c,b));
              else
                return make_object(segment(p,b));
          }

        default: // should not happen.
          CGAL_error();
          return Object();
      }

    // -----------------------------------
    // pqa COLLINEAR
    // -----------------------------------
    case COLLINEAR:
      switch ( pqb ) {
        case POSITIVE:
          switch ( pqc ) {
            case POSITIVE:
              // p,q,a are collinear
              if ( collinear_ordered(p,a,q) || collinear_ordered(p,q,a) )
                return make_object(a);
              else
                return Object();

            case NEGATIVE:
              // b is isolated on the positive side (here mb a could be use as
              // an endpoint instead of computing an intersection)
              return t3r3_intersection_coplanar_aux(c,a,b,r,false,k);

            case COLLINEAR:
              // a,c,p,q are aligned, [p,q]&[c,a] have the same direction
              if ( collinear_ordered(p,c,a) )
                return make_object(segment(c,a));
              else
                return make_object(segment(p,a));
          }

        case NEGATIVE:
          switch ( pqc ) {
            case POSITIVE:
              // b is isolated on the negative side (here mb a could be use as
              // an endpoint instead of computing an intersection)
              return t3r3_intersection_coplanar_aux(c,a,b,r,true,k);

            case NEGATIVE:
              // p,q,a are collinear
              if ( collinear_ordered(p,a,q) || collinear_ordered(p,q,a) )
                return make_object(a);
              else
                return Object();

            case COLLINEAR:
              // a,c,p,q are aligned, [p,q]&[a,c] have the same direction
              if ( collinear_ordered(p,a,c) )
                return make_object(segment(a,c));
              else
                return make_object(segment(p,c));
          }

        case COLLINEAR:
          switch ( pqc ) {
            case POSITIVE:
              // a,b,p,q are aligned, [p,q]&[a,b] have the same direction
              if ( collinear_ordered(p,a,b) )
                return make_object(segment(a,b));
              else
                return make_object(segment(p,b));

            case NEGATIVE:
              // a,b,p,q are aligned, [p,q]&[b,a] have the same direction
              if ( collinear_ordered(p,b,a) )
                return make_object(segment(b,a));
              else
                return make_object(segment(p,a));

            case COLLINEAR:
              // case pqc == COLLINEAR is impossible since the triangle is
              // assumed to be non flat
              CGAL_error();
              return Object();
          }

        default: // should not happen.
          CGAL_error();
          return Object();
      }

    default:// should not happen.
      CGAL_error();
      return Object();
  }
}


template <class K>
inline
Object
t3r3_intersection_aux(const typename K::Triangle_3 &t,
                      const typename K::Ray_3 &r,
                      const K& k)
{
  typename K::Intersect_3 intersection =
    k.intersect_3_object();

  Object obj = intersection(r.supporting_line(),t.supporting_plane());

  // Intersection should be a point (because of orientation test done before)
  if ( obj.is<typename K::Line_3>() )
    return Object();
  else
    return obj;
}


template <class K>
Object
intersection(const typename K::Triangle_3  &t,
             const typename K::Ray_3 &r,
             const K& k)
{
  CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
  CGAL_kernel_precondition( ! k.is_degenerate_3_object()(r) ) ;

  typedef typename K::Point_3 Point_3;

  typename K::Construct_vertex_3 vertex_on =
    k.construct_vertex_3_object();

  typename K::Orientation_3 orientation =
    k.orientation_3_object();

  typename K::Construct_ray_3 ray =
    k.construct_ray_3_object();

  typename K::Construct_point_on_3 point_on =
    k.construct_point_on_3_object();


  const Point_3& a = vertex_on(t,0);
  const Point_3& b = vertex_on(t,1);
  const Point_3& c = vertex_on(t,2);
  const Point_3& p = point_on(r,0);
  const Point_3& q = point_on(r,1);

  Point_3 d = point_on(ray(a,r.to_vector()),1);

  const Orientation ray_direction = orientation(a,b,c,d);
  const Orientation abcp = orientation(a,b,c,p);

  switch ( abcp ) {
    case POSITIVE:
      switch ( ray_direction ) {
        case POSITIVE:
          // the ray lies in the positive open halfspaces defined by the
          // triangle's supporting plane
          return Object();

        case NEGATIVE:
          // The ray straddles the triangle's plane
          // p sees the triangle in counterclockwise order
          if ( orientation(p,q,a,b) != POSITIVE
              && orientation(p,q,b,c) != POSITIVE
              && orientation(p,q,c,a) != POSITIVE )
            return t3r3_intersection_aux(t,r,k);
          else
            return Object();

        case COPLANAR:
          // The ray lie in a plane parallel to a,b,c support plane
          return Object();

        default: // should not happen.
          CGAL_error();
          return Object();
      }

    case NEGATIVE:
      switch ( ray_direction ) {
        case POSITIVE:
          // The ray straddles the triangle's plane
          // q sees the triangle in counterclockwise order

          if ( orientation(q,p,a,b) != POSITIVE
              && orientation(q,p,b,c) != POSITIVE
              && orientation(q,p,c,a) != POSITIVE )
            return t3r3_intersection_aux(t,r,k);
          else
            return Object();

        case NEGATIVE:
          // the ray lies in the negative open halfspaces defined by the
          // triangle's supporting plane
          return Object();

        case COPLANAR:
          // The ray lie in a plane parallel to a,b,c support plane
          return Object();

        default: // should not happen.
          CGAL_error();
          return Object();
      }

    case COPLANAR: // p belongs to the triangle's supporting plane
      switch ( ray_direction ) {
        case POSITIVE:
          // q sees the triangle in counterclockwise order
          if ( orientation(q,p,a,b) != POSITIVE
              && orientation(q,p,b,c) != POSITIVE
              && orientation(q,p,c,a) != POSITIVE )
            return t3r3_intersection_aux(t,r,k);
          else
            return Object();

        case NEGATIVE:
          // q sees the triangle in clockwise order
          if ( orientation(p,q,a,b) != POSITIVE
              && orientation(p,q,b,c) != POSITIVE
              && orientation(p,q,c,a) != POSITIVE )
            return t3r3_intersection_aux(t,r,k);
          else
            return Object();

        case COPLANAR:
          // The ray lie in triangle supporting plane
          return intersection_coplanar(t,r,k);

        default: // should not happen.
          CGAL_error();
          return Object();
      }

    default: // should not happen.
      CGAL_error();
      return Object();
  }

  CGAL_error();
  return Object();
}

template <class K>
Object
intersection(const typename K::Ray_3 &r,
             const typename K::Triangle_3  &t,
             const K& k)
{
  return intersection(t, r, k);
}

} // end namespace internal

template <class K>
inline
Object
intersection(const Triangle_3<K> &t, const Ray_3<K> &r)
{
  return typename K::Intersect_3()(t, r);
}

template <class K>
inline
Object
intersection(const Ray_3<K> &r, const Triangle_3<K> &t)
{
  return typename K::Intersect_3()(t, r);
}

} // end namespace CGAL

#endif // CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_RAY_3_INTERSECTION_H