1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
// Copyright (c) 2003,2004,2005,2006 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Menelaos Karavelas <mkaravel@iacm.forth.gr>
#ifndef CGAL_SEGMENT_DELAUNAY_GRAPH_2_BASIC_PREDICATES_C2_H
#define CGAL_SEGMENT_DELAUNAY_GRAPH_2_BASIC_PREDICATES_C2_H
#include <CGAL/license/Segment_Delaunay_graph_2.h>
#include <CGAL/Segment_Delaunay_graph_2/basic.h>
#include <CGAL/enum.h>
#include <CGAL/Sqrt_extension.h>
#include <CGAL/Segment_Delaunay_graph_2/Sqrt_extension_2.h>
namespace CGAL {
namespace SegmentDelaunayGraph_2 {
template<class K>
struct Basic_predicates_C2
{
public:
//-------------------------------------------------------------------
// TYPES
//-------------------------------------------------------------------
typedef typename K::RT RT;
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Site_2 Site_2;
typedef typename K::Oriented_side Oriented_side;
typedef typename K::Comparison_result Comparison_result;
typedef typename K::Sign Sign;
typedef typename K::Orientation Orientation;
typedef typename K::Compute_scalar_product_2 Compute_scalar_product_2;
typedef typename K::Boolean Boolean;
typedef CGAL::Sqrt_extension<RT,RT,Tag_true> Sqrt_1;
typedef CGAL::Sqrt_extension_2<RT> Sqrt_2;
typedef CGAL::Sqrt_extension_2<Sqrt_1> Sqrt_3;
private:
typedef typename Algebraic_structure_traits<RT>::Algebraic_category RT_Category;
typedef typename Algebraic_structure_traits<FT>::Algebraic_category FT_Category;
public:
typedef Boolean_tag<CGAL::is_same_or_derived<Field_with_sqrt_tag,RT_Category>::value> RT_Has_sqrt;
typedef Boolean_tag<CGAL::is_same_or_derived<Field_with_sqrt_tag,FT_Category>::value> FT_Has_sqrt;
class Line_2
{
private:
RT a_, b_, c_;
public:
Line_2() : a_(1), b_(0), c_(0) {}
Line_2(const RT& a, const RT& b, const RT& c)
: a_(a), b_(b), c_(c) {}
RT a() const { return a_; }
RT b() const { return b_; }
RT c() const { return c_; }
Oriented_side oriented_side(const Point_2& p) const
{
Sign s = CGAL::sign(a_ * p.x() + b_ * p.y() + c_);
if ( s == ZERO ) { return ON_ORIENTED_BOUNDARY; }
return (s == POSITIVE) ? ON_POSITIVE_SIDE : ON_NEGATIVE_SIDE;
}
};
class Homogeneous_point_2
{
private:
RT hx_, hy_, hw_;
public:
Homogeneous_point_2() : hx_(0), hy_(0), hw_(1) {}
Homogeneous_point_2(const RT& hx, const RT& hy, const RT& hw)
: hx_(hx), hy_(hy), hw_(hw)
{
CGAL_precondition( !(CGAL::is_zero(hw_)) );
}
Homogeneous_point_2(const Point_2& p)
: hx_(p.x()), hy_(p.y()), hw_(1) {}
Homogeneous_point_2(const Homogeneous_point_2& other)
: hx_(other.hx_), hy_(other.hy_), hw_(other.hw_) {}
RT hx() const { return hx_; }
RT hy() const { return hy_; }
RT hw() const { return hw_; }
FT x() const { return hx_ / hw_; }
FT y() const { return hy_ / hw_; }
};
public:
//-------------------------------------------------------------------
// CONVERSIONS
//-------------------------------------------------------------------
static FT compute_sqrt(const FT& x, const Tag_true&)
{
return CGAL::sqrt( x );
}
static FT compute_sqrt(const FT& x, const Tag_false&)
{
return FT( CGAL::sqrt( CGAL::to_double(x) ) );
}
static
FT to_ft(const Sqrt_1& x)
{
FT sqrt_c = compute_sqrt( x.root(), FT_Has_sqrt() );
return x.a0() + x.a1() * sqrt_c;
}
static
FT to_ft(const Sqrt_3& x)
{
FT sqrt_e = compute_sqrt( to_ft(x.e()), FT_Has_sqrt() );
FT sqrt_f = compute_sqrt( to_ft(x.f()), FT_Has_sqrt() );
FT sqrt_ef = sqrt_e * sqrt_f;
return to_ft(x.a()) + to_ft(x.b()) * sqrt_e
+ to_ft(x.c()) * sqrt_f + to_ft(x.d()) * sqrt_ef;
}
public: // compute_supporting_line(q.supporting_segment(), a1, b1, c1);
// compute_supporting_line(r.supporting_segment(), a2, b2, c2);
//-------------------------------------------------------------------
// BASIC CONSTRUCTIONS
//-------------------------------------------------------------------
#if 1
static
Line_2 compute_supporting_line(const Site_2& s)
{
RT a, b, c;
compute_supporting_line(s, a, b, c);
return Line_2(a, b, c);
}
static
void compute_supporting_line(const Site_2& s,
RT& a, RT& b, RT& c)
{
a = s.source().y() - s.target().y();
b = s.target().x() - s.source().x();
c = s.source().x() * s.target().y() - s.target().x() * s.source().y();
}
#else
static
Line_2 compute_supporting_line(const Segment_2& s)
{
RT a, b, c;
compute_supporting_line(s, a, b, c);
return Line_2(a, b, c);
}
static
void compute_supporting_line(const Segment_2& s,
RT& a, RT& b, RT& c)
{
a = s.source().y() - s.target().y();
b = s.target().x() - s.source().x();
c = s.source().x() * s.target().y() - s.target().x() * s.source().y();
}
#endif
static
Homogeneous_point_2
compute_projection(const Line_2& l, const Point_2& p)
{
RT ab = l.a() * l.b();
RT hx = CGAL::square(l.b()) * p.x()
- ab * p.y() - l.a() * l.c();
RT hy = CGAL::square(l.a()) * p.y()
- ab * p.x() - l.b() * l.c();
RT hw = CGAL::square(l.a()) + CGAL::square(l.b());
return Homogeneous_point_2(hx, hy, hw);
}
static
Homogeneous_point_2
projection_on_line(const Line_2& l, const Point_2& p)
{
RT ab = l.a() * l.b();
RT hx = CGAL::square(l.b()) * p.x()
- ab * p.y() - l.a() * l.c();
RT hy = CGAL::square(l.a()) * p.y()
- ab * p.x() - l.b() * l.c();
RT hw = CGAL::square(l.a()) + CGAL::square(l.b());
return Homogeneous_point_2(hx, hy, hw);
}
static
Homogeneous_point_2
midpoint(const Point_2& p1, const Point_2& p2)
{
RT hx = p1.x() + p2.x();
RT hy = p1.y() + p2.y();
RT hw = RT(2);
return Homogeneous_point_2(hx, hy, hw);
}
static
Homogeneous_point_2
midpoint(const Homogeneous_point_2& p1,
const Homogeneous_point_2& p2)
{
RT hx = p1.hx() * p2.hw() + p2.hx() * p1.hw();
RT hy = p1.hy() * p2.hw() + p2.hy() * p1.hw();
RT hw = RT(2) * p1.hw() * p2.hw();
return Homogeneous_point_2(hx, hy, hw);
}
static
Line_2 compute_perpendicular(const Line_2& l, const Point_2& p)
{
RT a, b, c;
a = -l.b();
b = l.a();
c = l.b() * p.x() - l.a() * p.y();
return Line_2(a, b, c);
}
static
Line_2 opposite_line(const Line_2& l)
{
return Line_2(-l.a(), -l.b(), -l.c());
}
static
RT compute_squared_distance(const Point_2& p, const Point_2& q)
{
return CGAL::square(p.x() - q.x()) + CGAL::square(p.y() - q.y());
}
static
std::pair<RT,RT>
compute_squared_distance(const Point_2& p, const Line_2& l)
{
RT d2 = CGAL::square(l.a() * p.x() + l.b() * p.y() + l.c());
RT n2 = CGAL::square(l.a()) + CGAL::square(l.b());
return std::pair<RT,RT>(d2, n2);
}
public:
//-------------------------------------------------------------------
// BASIC PREDICATES
//-------------------------------------------------------------------
static
Comparison_result
compare_squared_distances_to_line(const Line_2& l, const Point_2& p,
const Point_2& q)
{
RT d2_lp = CGAL::square(l.a() * p.x() + l.b() * p.y() + l.c());
RT d2_lq = CGAL::square(l.a() * q.x() + l.b() * q.y() + l.c());
return CGAL::compare(d2_lp, d2_lq);
}
static
Comparison_result
compare_squared_distances_to_lines(const Point_2& p,
const Line_2& l1,
const Line_2& l2)
{
RT d2_l1 = CGAL::square(l1.a() * p.x() + l1.b() * p.y() + l1.c());
RT d2_l2 = CGAL::square(l2.a() * p.x() + l2.b() * p.y() + l2.c());
RT n1 = CGAL::square(l1.a()) + CGAL::square(l1.b());
RT n2 = CGAL::square(l2.a()) + CGAL::square(l2.b());
return CGAL::compare(d2_l1 * n2, d2_l2 * n1);
}
static
Oriented_side
oriented_side_of_line(const Line_2& l, const Point_2& p)
{
return CGAL::sign(l.a() * p.x() + l.b() * p.y() + l.c());
}
static
Oriented_side
oriented_side_of_line(const Line_2& l, const Homogeneous_point_2& p)
{
Sign s1 =
CGAL::sign(l.a() * p.hx() + l.b() * p.hy() + l.c() * p.hw());
Sign s_hw = CGAL::sign(p.hw());
return s1 * s_hw;
}
static
bool is_on_positive_halfspace(const Line_2& l, const Segment_2& s)
{
Oriented_side os1, os2;
os1 = oriented_side_of_line(l, s.source());
os2 = oriented_side_of_line(l, s.target());
return ( (os1 == ON_POSITIVE_SIDE && os2 != ON_NEGATIVE_SIDE) ||
(os1 != ON_NEGATIVE_SIDE && os2 == ON_POSITIVE_SIDE) );
}
};
} //namespace SegmentDelaunayGraph_2
} //namespace CGAL
#endif // CGAL_SEGMENT_DELAUNAY_GRAPH_2_BASIC_PREDICATES_C2_H
|