File: Vertex_conflict_C2.h

package info (click to toggle)
cgal 4.13-1
  • links: PTS
  • area: main
  • in suites: buster
  • size: 101,504 kB
  • sloc: cpp: 703,154; ansic: 163,044; sh: 674; fortran: 616; python: 411; makefile: 115
file content (575 lines) | stat: -rw-r--r-- 17,232 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
// Copyright (c) 2003,2004,2005,2006  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
// 
//
// Author(s)     : Menelaos Karavelas <mkaravel@iacm.forth.gr>



#ifndef CGAL_SEGMENT_DELAUNAY_GRAPH_2_VERTEX_CONFLICT_C2_H
#define CGAL_SEGMENT_DELAUNAY_GRAPH_2_VERTEX_CONFLICT_C2_H

#include <CGAL/license/Segment_Delaunay_graph_2.h>


#include <CGAL/Segment_Delaunay_graph_2/Voronoi_vertex_C2.h>
#include <CGAL/Segment_Delaunay_graph_2/Are_same_points_C2.h>
#include <CGAL/Segment_Delaunay_graph_2/Are_same_segments_C2.h>

#ifdef CGAL_SDG_CHECK_INCIRCLE_CONSISTENCY
#ifndef CGAL_SDG_USE_OLD_INCIRCLE
#include <CGAL/Segment_Delaunay_graph_2/Voronoi_vertex_sqrt_field_C2.h>
#endif // CGAL_SDG_USE_OLD_INCIRCLE
#endif // CGAL_SDG_CHECK_INCIRCLE_CONSISTENCY

namespace CGAL {

namespace SegmentDelaunayGraph_2 {

//---------------------------------------------------------------------

template<class K, class Method_tag>
class Vertex_conflict_C2
{
private:
  typedef typename K::Point_2                Point_2;
  typedef typename K::Segment_2              Segment_2;
  typedef typename K::Site_2                 Site_2;
  typedef typename K::FT                     FT;
  typedef typename K::RT                     RT;
  typedef typename K::Orientation            Orientation;
  typedef typename K::Sign                   Sign;

  typedef Voronoi_vertex_C2<K,Method_tag>    Voronoi_vertex_2;

  typedef Are_same_points_C2<K>              Are_same_points_2;
  typedef Are_same_segments_C2<K>            Are_same_segments_2;

  typedef typename K::Intersections_tag      ITag;

private:
  Are_same_points_2    same_points;
  Are_same_segments_2  same_segments;

  bool is_on_common_support(const Site_2& s1, const Site_2& s2,
			    const Point_2& p) const
  {
    CGAL_precondition( !s1.is_input() && !s2.is_input() );

    if (  same_segments(s1.supporting_site(0),
			s2.supporting_site(0)) ||
	  same_segments(s1.supporting_site(0),
			s2.supporting_site(1))  ) {
      Site_2 support = s1.supporting_site(0);
      Site_2 tp = Site_2::construct_site_2(p);

      return (  same_points(support.source_site(), tp) ||
		same_points(support.target_site(), tp)  );
    } else if (  same_segments(s1.supporting_site(1),
			       s2.supporting_site(1)) ||
		 same_segments(s1.supporting_site(1),
			       s2.supporting_site(0))  ) {
      Site_2 support = s1.supporting_site(1);
      Site_2 tp = Site_2::construct_site_2(p);

      return (  same_points(support.source_site(), tp) ||
		same_points(support.target_site(), tp)  );      
    }
    return false;
  }

  bool have_common_support(const Site_2& p, const Site_2& q) const
  {
    CGAL_precondition( !p.is_input() && !q.is_input() );

    return
      same_segments(p.supporting_site(0), q.supporting_site(0)) ||
      same_segments(p.supporting_site(0), q.supporting_site(1)) ||
      same_segments(p.supporting_site(1), q.supporting_site(1)) ||
      same_segments(p.supporting_site(1), q.supporting_site(0));
  }

  bool have_common_support(const Site_2& s, const Point_2& p1,
			   const Point_2& p2) const
  {
    CGAL_precondition( !s.is_input() );

    Site_2 t = Site_2::construct_site_2(p1, p2);

    return ( same_segments(s.supporting_site(0), t) ||
	     same_segments(s.supporting_site(1), t) );
  }

private:
  Sign incircle_ppp(const Site_2& p, const Site_2& q,
		    const Site_2& t, const Tag_false&) const
  {
    Point_2 pp = p.point(), qp = q.point(), tp = t.point();

    // MK::ERROR: here I should call a kernel object, not a
    // function...; actually here (and everywhere in this class)
    // use the orientation predicate for sites; it does some
    // geometric filtering...
    Orientation o = orientation(pp, qp, tp);

    if ( o != COLLINEAR ) {
      return (o == LEFT_TURN) ? POSITIVE : NEGATIVE;
    }

    // MK::ERROR: change the following code to use the compare_x_2
    // and compare_y_2 stuff...
    RT dtpx = pp.x() - tp.x();
    RT dtpy = pp.y() - tp.y();
    RT dtqx = qp.x() - tp.x();
    RT minus_dtqy = -qp.y() + tp.y();
    
    Sign s = sign_of_determinant(dtpx, dtpy, minus_dtqy, dtqx);

    CGAL_assertion( s != ZERO );

    return s;
  }

  Sign incircle_ppp(const Site_2& p, const Site_2& q,
		    const Site_2& t, const Tag_true&) const
  {
    Orientation o = COLLINEAR; // the initialization was done in
                               // order a compiler warning

    // do some geometric filtering...
    bool p_exact = p.is_input();
    bool q_exact = q.is_input();
    bool t_exact = t.is_input();
    bool filtered = false;
    // the following if-statement does the gometric filtering...
    // maybe it is not so important since this will only be
    // activated if a lot of intersection points appear on the
    // convex hull
    if ( !p_exact || !q_exact || !t_exact ) {
      if ( !p_exact && !q_exact && !t_exact ) {
	if ( have_common_support(p, q) &&
	     have_common_support(q, t) ) {
	  o = COLLINEAR;
	  filtered = true;
	}
      } else if ( !p_exact && !q_exact && t_exact ) {
	if ( is_on_common_support(p, q, t.point()) ) {
	  o = COLLINEAR;
	  filtered = true;
	}
      } else if ( !p_exact && q_exact && !t_exact ) {
	if ( is_on_common_support(p, t, q.point()) ) {
	  o = COLLINEAR;
	  filtered = true;
	}
      } else if ( p_exact && !q_exact && !t_exact ) {
	if ( is_on_common_support(t, q, p.point()) ) {
	  o = COLLINEAR;
	  filtered = true;
	}
      } else if ( !p_exact && q_exact && t_exact ) {
	if ( have_common_support(p, q.point(), t.point()) ) {
	  o = COLLINEAR;
	  filtered = true;
	}
      } else if ( p_exact && !q_exact && t_exact ) {
	if ( have_common_support(q, p.point(), t.point()) ) {
	  o = COLLINEAR;
	  filtered = true;
	}
      } else if ( p_exact && q_exact && !t_exact ) {
	if ( have_common_support(t, p.point(), q.point()) ) {
	  o = COLLINEAR;
	  filtered = true;
	}
      }
    }

    Point_2 pp = p.point(), qp = q.point(), tp = t.point();

    if ( !filtered ) {
      // MK::ERROR: here I should call a kernel object, not a
      // function...; actually here (and everywhere in this class)
      // use the orientation predicate for sites; it does some
      // geometric filtering...
      o = orientation(pp, qp, tp);
    }

    if ( o != COLLINEAR ) {
      return (o == LEFT_TURN) ? POSITIVE : NEGATIVE;
    }

    // MK::ERROR: change the following code to use the compare_x_2
    // and compare_y_2 stuff...
    RT dtpx = pp.x() - tp.x();
    RT dtpy = pp.y() - tp.y();
    RT dtqx = qp.x() - tp.x();
    RT minus_dtqy = -qp.y() + tp.y();
    
    Sign s = sign_of_determinant(dtpx, dtpy, minus_dtqy, dtqx);
    
    CGAL_assertion( s != ZERO );

    return s;
  }


  Sign incircle_p(const Site_2& p, const Site_2& q,
		  const Site_2& t) const
  {
    CGAL_precondition( t.is_point() );

    if ( p.is_point() && q.is_point() ) {

#if 1
      return incircle_ppp(p, q, t, ITag());

#else
      Orientation o = COLLINEAR; // the initialization was done in
                                 // order a compiler warning

      // do some geometric filtering...
      bool p_exact = p.is_input();
      bool q_exact = q.is_input();
      bool t_exact = t.is_input();
      bool filtered = false;
      // the following if-statement does the gometric filtering...
      // maybe it is not so important since this will only be
      // activated if a lot of intersection points appear on the
      // convex hull
      if ( !p_exact || !q_exact || !t_exact ) {
	if ( !p_exact && !q_exact && !t_exact ) {
	  if ( have_common_support(p, q) &&
	       have_common_support(q, t) ) {
	    o = COLLINEAR;
	    filtered = true;
	  }
	} else if ( !p_exact && !q_exact && t_exact ) {
	  if ( is_on_common_support(p, q, t.point()) ) {
	    o = COLLINEAR;
	    filtered = true;
	  }
	} else if ( !p_exact && q_exact && !t_exact ) {
	  if ( is_on_common_support(p, t, q.point()) ) {
	    o = COLLINEAR;
	    filtered = true;
	  }
	} else if ( p_exact && !q_exact && !t_exact ) {
	  if ( is_on_common_support(t, q, p.point()) ) {
	    o = COLLINEAR;
	    filtered = true;
	  }
	} else if ( !p_exact && q_exact && t_exact ) {
	  if ( have_common_support(p, q.point(), t.point()) ) {
	    o = COLLINEAR;
	    filtered = true;
	  }
	} else if ( p_exact && !q_exact && t_exact ) {
	  if ( have_common_support(q, p.point(), t.point()) ) {
	    o = COLLINEAR;
	    filtered = true;
	  }
	} else if ( p_exact && q_exact && !t_exact ) {
	  if ( have_common_support(t, p.point(), q.point()) ) {
	    o = COLLINEAR;
	    filtered = true;
	  }
	}
      }

      Point_2 pp = p.point(), qp = q.point(), tp = t.point();

      if ( !filtered ) {
	// MK::ERROR: here I should call a kernel object, not a
	// function...; actually here (and everywhere in this class)
	// use the orientation predicate for sites; it does some
	// geometric filtering...
	o = orientation(pp, qp, tp);
      }

      if ( o != COLLINEAR ) {
	return (o == LEFT_TURN) ? POSITIVE : NEGATIVE;
      }

      // MK::ERROR: change the following code to use the compare_x_2
      // and compare_y_2 stuff...
      RT dtpx = pp.x() - tp.x();
      RT dtpy = pp.y() - tp.y();
      RT dtqx = qp.x() - tp.x();
      RT minus_dtqy = -qp.y() + tp.y();
      
      Sign s = sign_of_determinant(dtpx, dtpy, minus_dtqy, dtqx);

      CGAL_assertion( s != ZERO );

      return s;
#endif
    }

    CGAL_assertion( p.is_point() || q.is_point() );

    Orientation o;
    if ( p.is_point() && q.is_segment() ) {
      Point_2 pq = same_points(p, q.source_site()) ? q.target() : q.source();
      o = orientation(p.point(), pq, t.point());
    } else { // p is a segment and q is a point
      Point_2 pp = same_points(q, p.source_site()) ? p.target() : p.source();
      o = orientation(pp, q.point(), t.point());
    }
    if ( CGAL::is_certain(o == RIGHT_TURN) )
        return CGAL::get_certain( o == RIGHT_TURN ) ? NEGATIVE : POSITIVE;
    return CGAL::Uncertain<CGAL::Sign>::indeterminate();
  }

  //-----------------------------------------------------------------------


  Sign incircle_pps(const Site_2& p, const Site_2& q,
		    const Site_2& t) const
  {
    CGAL_precondition( p.is_point() && q.is_point() );

    bool is_p_tsrc = same_points(p, t.source_site());
    bool is_p_ttrg = same_points(p, t.target_site());

    bool is_q_tsrc = same_points(q, t.source_site());
    bool is_q_ttrg = same_points(q, t.target_site());

    bool is_p_on_t = is_p_tsrc || is_p_ttrg;
    bool is_q_on_t = is_q_tsrc || is_q_ttrg;

    if ( is_p_on_t && is_q_on_t ) {
	// if t is the segment joining p and q then t must be a vertex
	// on the convex hull
	return NEGATIVE;
    } else if ( is_p_on_t ) {
      // p is an endpoint of t
      // in this case the p,q,oo vertex is destroyed only if the
      // other endpoint of t is beyond
      Point_2 pt = is_p_tsrc ? t.target() : t.source();
      Orientation o = orientation(p.point(), q.point(), pt);

      return (o == RIGHT_TURN) ? NEGATIVE : POSITIVE;
    } else if ( is_q_on_t ) {
      Point_2 pt = is_q_tsrc ? t.target() : t.source();
      Orientation o = orientation(p.point(), q.point(), pt);

      return (o == RIGHT_TURN) ? NEGATIVE : POSITIVE;
    } else {
      // maybe here I should immediately return POSITIVE;
      // since we insert endpoints of segments first, p and q cannot
      // be consecutive points on the convex hull if one of the
      // endpoints of t is to the right of the line pq.
      Point_2 pp = p.point(), qq = q.point();
      Orientation o1 = orientation(pp, qq, t.source());
      Orientation o2 = orientation(pp, qq, t.target());

      if ( o1 == RIGHT_TURN || o2 == RIGHT_TURN ) {
	return NEGATIVE;
      }
      return POSITIVE;
    }
  }


  Sign incircle_sps(const Site_2& p, const Site_2& q,
		    const Site_2& t) const
  {
    CGAL_precondition( p.is_segment() && q.is_point() );

    bool is_q_tsrc = same_points(q, t.source_site());
    bool is_q_ttrg = same_points(q, t.target_site());

    bool is_q_on_t = is_q_tsrc || is_q_ttrg;

    if ( is_q_on_t ) {
      Point_2 pp = same_points(q, p.source_site()) ? p.target() : p.source();
      Point_2 pt = is_q_tsrc ? t.target() : t.source();

      Orientation o = orientation(pp, q.point(), pt);

      return (o == RIGHT_TURN) ? NEGATIVE : POSITIVE;
    } else {
      return POSITIVE;
    }
  }


  Sign incircle_pss(const Site_2& p, const Site_2& q,
		    const Site_2& t) const
  {
    CGAL_precondition( p.is_point() && q.is_segment() );

    bool is_p_tsrc = same_points(p, t.source_site());
    bool is_p_ttrg = same_points(p, t.target_site());

    bool is_p_on_t = is_p_tsrc || is_p_ttrg;

    if ( is_p_on_t ) {
      Point_2 pq = same_points(p, q.source_site()) ? q.target() : q.source();
      Point_2 pt = is_p_tsrc ? t.target() : t.source();

      Orientation o = orientation(p.point(), pq, pt);

      return (o == RIGHT_TURN) ? NEGATIVE : POSITIVE;
    } else {
      // if p is not an endpoint of t, then either p and q should
      // not be on the convex hull or t does not affect the vertex
      // of p and q.
      return POSITIVE;
    }
  }


  Sign incircle_s(const Site_2& p, const Site_2& q,
		  const Site_2& t) const
  {
    CGAL_precondition( t.is_segment() );

    if ( p.is_point() && q.is_point() ) {
      return incircle_pps(p, q, t);
    } else if ( p.is_point() && q.is_segment() ) {
      return incircle_pss(p, q, t);
    } else { // p is a segment and q is a point
      return incircle_sps(p, q, t);
    }
  }


public:
  typedef Site_2      argument_type;
  typedef Sign        result_type;


  Sign operator()(const Site_2& p, const Site_2& q,
		  const Site_2& r, const Site_2& t) const
  {
#ifdef CGAL_PROFILE
    // In case CGAL profile is called then output the sites in case of
    // a filter failure
    if ( Algebraic_structure_traits<FT>::Is_exact::value ) {
      int np = 0;
      if ( p.is_point() ) ++np;
      if ( q.is_point() ) ++np;
      if ( r.is_point() ) ++np;
      std::string suffix("-failure-log.cin");
      std::string fname;
      if ( np == 3 ) {
	fname = "ppp";
      } else if ( np == 2 ) {
	fname = "pps";
      } else if ( np == 1 ) {
	fname = "pss";
      } else {
	fname = "sss";
      }
      fname += suffix;
      std::ofstream ofs(fname.c_str(), std::ios_base::app);
      ofs.precision(16);
      ofs << p << std::endl;
      ofs << q << std::endl;
      ofs << r << std::endl;
      ofs << t << std::endl;
      ofs << "=======" << std::endl;
      ofs.close();
    }
#endif

#ifdef CGAL_SDG_CHECK_INCIRCLE_CONSISTENCY
#ifdef CGAL_SDG_USE_OLD_INCIRCLE
    typedef Voronoi_vertex_sqrt_field_new_C2<K>   Alt_Voronoi_vertex_2;
#else
    typedef Voronoi_vertex_sqrt_field_C2<K>       Alt_Voronoi_vertex_2;
#endif

    Voronoi_vertex_2 v(p, q, r);
    Alt_Voronoi_vertex_2 v_alt(p, q, r);

    Sign s = v.incircle(t);
    Sign s_alt = v_alt.incircle(t);

    if ( s != s_alt ) {
      std::cerr << "different results" << std::endl;
      std::cerr << p << std::endl;
      std::cerr << q << std::endl;
      std::cerr << r << std::endl;
      std::cerr << t << std::endl;
      CGAL_assertion( s == s_alt );
      exit(1);
    }

    return s;
#else
    Voronoi_vertex_2 v(p, q, r);

    return v.incircle(t);
#endif // CGAL_SDG_CHECK_INCIRCLE_CONSISTENCY
  }


  

  Sign operator()(const Site_2& p, const Site_2& q,
		  const Site_2& t) const
  {
#ifdef CGAL_PROFILE
    // In case CGAL profile is called then output the sites in case of
    // a filter failure
    if ( Algebraic_structure_traits<FT>::Is_exact::value ) {
      std::ofstream ofs("failure-log.cin", std::ios_base::app);
      ofs.precision(16);
      ofs << p << std::endl;
      ofs << q << std::endl;
      ofs << t << std::endl;
      ofs << "=======" << std::endl;
      ofs.close();
    }
#endif

    CGAL_assertion( !(p.is_segment() && q.is_segment()) );

    if ( p.is_point() && q.is_segment() ) {
      // p must be an endpoint of q
      CGAL_assertion( same_points(p, q.source_site()) ||
		      same_points(p, q.target_site()) );
    } else if ( p.is_segment() && q.is_point() ) {
      // q must be an endpoint of p
      CGAL_assertion( same_points(p.source_site(), q) ||
		      same_points(p.target_site(), q) );
    }

    if ( t.is_point() ) {
      //      return incircle_p(p, q, t);
      return incircle_p(q, p, t);
    }

    // MK::ERROR: do geometric filtering when orientation is called.
    //    return incircle_s(p, q, t);
    return incircle_s(q, p, t);
  }


};

//---------------------------------------------------------------------

} //namespace SegmentDelaunayGraph_2

} //namespace CGAL

#endif // CGAL_SEGMENT_DELAUNAY_GRAPH_2_VERTEX_CONFLICT_C2_H