File: Apollonius_graph_hierarchy_2_impl.h

package info (click to toggle)
cgal 4.5-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 69,700 kB
  • ctags: 118,537
  • sloc: cpp: 571,870; ansic: 110,997; sh: 725; python: 92; makefile: 87
file content (554 lines) | stat: -rw-r--r-- 15,296 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
// Copyright (c) 2003,2004,2006  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Menelaos Karavelas <mkaravel@iacm.forth.gr>

#ifndef CGAL_APOLLONIUS_GRAPH_HIERARCHY_2_IMPL_H
#define CGAL_APOLLONIUS_GRAPH_HIERARCHY_2_IMPL_H


// class implementation
//---------------------

namespace CGAL {

template<class Gt, class Agds, class LTag>
void
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::
init_hierarchy(const Geom_traits& gt)
{
  hierarchy[0] = this; 
  for(unsigned int i = 1; i < ag_hierarchy_2__maxlevel; ++i) {
    hierarchy[i] = new Apollonius_graph_base(gt);
  }
}

template<class Gt, class Agds, class LTag>
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::
Apollonius_graph_hierarchy_2(const Geom_traits& gt)
  : Apollonius_graph_base(gt)
{ 
  init_hierarchy(gt);
}


// copy constructor duplicates vertices and faces
template<class Gt, class Agds, class LTag>
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::
Apollonius_graph_hierarchy_2
(const Apollonius_graph_hierarchy_2<Gt,Agds,LTag>& agh)
    : Apollonius_graph_base(agh.geom_traits())
{ 
  init_hierarchy(agh.geom_traits());
  copy(agh);
} 
 

//Assignement
template<class Gt, class Agds, class LTag>
Apollonius_graph_hierarchy_2<Gt,Agds,LTag> &
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::
operator=(const Apollonius_graph_hierarchy_2<Gt,Agds,LTag> &agh)
{
  copy(agh);
  return *this;
}

template<class Gt, class Agds, class LTag>
void
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::
copy
(const Apollonius_graph_hierarchy_2<Gt,Agds,LTag> &agh)
{
  std::map< Vertex_handle, Vertex_handle > V;
  for(unsigned int i = 0; i < ag_hierarchy_2__maxlevel; ++i) {
    //      hierarchy[i]->copy_triangulation(*awvd.hierarchy[i]);
    *(hierarchy[i]) = *agh.hierarchy[i];
  }

  //up and down have been copied in straightforward way
  // compute a map at lower level
  for( Finite_vertices_iterator it = hierarchy[0]->finite_vertices_begin(); 
       it != hierarchy[0]->finite_vertices_end(); ++it) {
    if ( it->up() != Vertex_handle() ) V[ it->up()->down() ] = it;
  }

  for(unsigned int i = 1; i < ag_hierarchy_2__maxlevel; ++i) {
    for( Finite_vertices_iterator it = hierarchy[i]->finite_vertices_begin(); 
	 it != hierarchy[i]->finite_vertices_end(); ++it) {
      // down pointer goes in original instead in copied triangulation
      it->set_down(V[it->down()]);
      // make reverse link
      it->down()->set_up( it );
      // make map for next level
      if ( it->up() != Vertex_handle() ) V[ it->up()->down() ] = it;
    }
  }
}

template<class Gt, class Agds, class LTag>
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>:: 
~Apollonius_graph_hierarchy_2()
{
  clear();
  for(unsigned int i = 1; i < ag_hierarchy_2__maxlevel; ++i) {
    delete hierarchy[i];
  }
}

template<class Gt, class Agds, class LTag>
void
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>:: 
clear()
{
  for(unsigned int i = 0; i < ag_hierarchy_2__maxlevel; ++i) {
    hierarchy[i]->clear();
  }
}

template<class Gt, class Agds, class LTag>
bool
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>:: 
is_valid(bool verbose, int level) const
{
  bool result(true);

  //verify correctness of triangulation at all levels
  for(unsigned int i = 0; i < ag_hierarchy_2__maxlevel; ++i) {
    if ( verbose ) {
      std::cerr << "Level " << i << ": " << std::flush;
    }
    result = result && hierarchy[i]->is_valid(verbose, level);
    if ( verbose ) {
      std::cerr << std::endl;
    }
  }
  //verify that lower level has no down pointers
  for( Finite_vertices_iterator it = hierarchy[0]->finite_vertices_begin(); 
       it != hierarchy[0]->finite_vertices_end(); ++it) {
    result = result && ( it->down() == 0 );
  }

  //verify that other levels has down pointer and reciprocal link is fine
  for(unsigned int i = 1; i < ag_hierarchy_2__maxlevel; ++i) {
    for( Finite_vertices_iterator it = hierarchy[i]->finite_vertices_begin(); 
	 it != hierarchy[i]->finite_vertices_end(); ++it) {
      result = result && ( &*it == &*(it->down()->up()) );
    }
  }
  return result;
}


template<class Gt, class Agds, class LTag>
typename Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::Vertex_handle
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::
insert(const Site_2 &p)
{
  int vertex_level = random_level();

  size_type n = this->number_of_vertices();
  Vertex_handle vertex;
  Vertex_handle vnear[ag_hierarchy_2__maxlevel];

  typename Apollonius_graph_base::List l;
  typename Apollonius_graph_base::Face_map fm;
  typename Apollonius_graph_base::Vertex_map v_hidden;

  if ( n <= 2 ) {
    if ( n == 0 ) {
      vertex = insert_first(p);
    } else if ( n == 1 ) {
      vertex = insert_second(p);
    } else if ( n == 2 ) {
      vertex = insert_third(p);
    }

    // if it hidden just return it right away
    if ( vertex == Vertex_handle() ) {
      return vertex;
    }

    Vertex_handle previous = vertex;
    Vertex_handle first = vertex;

    int level = 1;
    while (level <= vertex_level ){
      vertex = hierarchy[level]->insert(p, vnear[level]);
      vertex->set_down(previous); // link with level above
      previous->set_up(vertex);
      previous = vertex;
      level++;
    }
    return first;
  }

  std::size_t n_hidden = 0;

  // locate the nearest neighbor using hierarchy
  nearest_neighbor(p.point(), vnear);

  CGAL_assertion( vnear[0] != Vertex_handle() );

  // check if it is hidden
  Site_2 wp_nearest = vnear[0]->site();
  if ( is_hidden(wp_nearest, p) ) {
    vnear[0]->add_hidden_site(p);
    return Vertex_handle();
  }

  // find the first conflict
  typename Apollonius_graph_base::Face_circulator fc_start =
    hierarchy[0]->incident_faces(vnear[0]);
  typename Apollonius_graph_base::Face_circulator fc = fc_start;

  Face_handle start_f;
  Sign s;
  do {
    Face_handle f(fc);
    s = incircle(f, p);

    if ( s == NEGATIVE ) {
      start_f = f;
      break;
    }
    ++fc;
  } while ( fc != fc_start );

  if ( s != NEGATIVE ) {
    typename Apollonius_graph_base::Edge_circulator ec_start = 
      hierarchy[0]->incident_edges(vnear[0]);
    typename Apollonius_graph_base::Edge_circulator ec = ec_start;

    bool interior_in_conflict(false);
    typename Apollonius_graph_base::Edge e;
    do {
      e = *ec;
      interior_in_conflict = edge_interior(e, p, false);
      
      if ( interior_in_conflict ) { break; }
      ++ec;
    } while ( ec != ec_start );

    CGAL_assertion( interior_in_conflict );

    vertex = insert_degree_2(e, p);

    // insert at other levels
    Vertex_handle previous = vertex;
    Vertex_handle first = vertex;

    int level = 1;
    while (level <= vertex_level ){
      vertex = hierarchy[level]->insert(p, vnear[level]);
      vertex->set_down(previous); // link with level above
      previous->set_up(vertex);
      previous = vertex;
      level++;
    }
    return first;
  }

  initialize_conflict_region(start_f, l);
  expand_conflict_region(start_f, p, l, fm, v_hidden, NULL);
  n_hidden = v_hidden.size();

  if ( n_hidden != 0 ) {
    std::size_t n_non_hidden = this->number_of_vertices() - n_hidden;
    if ( n_non_hidden < 2 ) {
      for(unsigned int i = 1; i < ag_hierarchy_2__maxlevel; ++i) {
	hierarchy[i]->clear();
      }

      if ( n_non_hidden == 1 ) {
	Vertex_handle non_hidden;
	Finite_vertices_iterator vit = this->finite_vertices_begin();
	do {
	  non_hidden = Vertex_handle(vit);
	  ++vit;
	} while ( v_hidden.find(non_hidden) != v_hidden.end() );

	non_hidden->set_up( Vertex_handle() );
      }
    } else {
      typename Apollonius_graph_base::Vertex_map::iterator it;
      for (it = v_hidden.begin(); it != v_hidden.end(); it++) {
	Vertex_handle v = (*it).first;
	Vertex_handle u = v->up();
	if ( u != Vertex_handle() ) {
	  v = u;
	  u = v->up();
	  unsigned int l = 1;
	  while ( true ) {
	    hierarchy[l++]->remove(v);
	    if ( u == Vertex_handle() ) break; 
	    if(l >= ag_hierarchy_2__maxlevel) { break; }
	    v = u;
	    u = v->up();
	  }
	}
      }
    }
  }

  // now really insert at level 0
  vertex = retriangulate_conflict_region(p, l, fm, v_hidden);

  fm.clear();
  v_hidden.clear();
  // end of insertion at level 0

  // insert at other levels
  Vertex_handle previous = vertex;
  Vertex_handle first = vertex;

  if ( n_hidden != 0 ) {
    nearest_neighbor(p.point(), vnear);
  }
      
  int level = 1;
  while (level <= vertex_level ){
    vertex = hierarchy[level]->insert(p, vnear[level]);
    vertex->set_down(previous); // link with level above
    previous->set_up(vertex);
    previous = vertex;
    level++;
  }
  return first;
}

template<class Gt, class Agds, class LTag>
void 
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::
remove(Vertex_handle v)
{
  CGAL_triangulation_precondition( v != Vertex_handle());
  CGAL_triangulation_precondition( !is_infinite(v));

  // get the hidden circles
  typename Apollonius_graph_base::Site_list wp_list;
  typename Apollonius_graph_base::Vertex::Hidden_sites_iterator wpit;

  for (wpit = v->hidden_sites_begin();
       wpit != v->hidden_sites_end(); ++wpit) {
    wp_list.push_back(*wpit);
  }
  v->clear_hidden_sites_container();

  // do the actual removal
  Vertex_handle u = v->up();
  unsigned int l = 0;
  while ( true ) {
    hierarchy[l++]->remove(v);
    if ( u == Vertex_handle() ) break; 
    if(l >= ag_hierarchy_2__maxlevel) break;
    v = u;
    u = v->up();
  }

  insert(wp_list.begin(), wp_list.end());
}


template<class Gt, class Agds, class LTag>
typename Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::Vertex_handle 
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::
nearest_neighbor(const Point_2& p) const
{
  Vertex_handle vnear[ag_hierarchy_2__maxlevel];
  nearest_neighbor(p, vnear);
  return vnear[0];
}



template<class Gt, class Agds, class LTag>
void
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::
swap(Apollonius_graph_hierarchy_2<Gt,Agds,LTag>& agh)
{
  Ag_base* temp;
  Ag_base::swap(agh);
  for(unsigned int i = 1; i < ag_hierarchy_2__maxlevel; ++i){
    temp = hierarchy[i];
    hierarchy[i] = agh.hierarchy[i];
    agh.hierarchy[i]= temp;
  }
}




template<class Gt, class Agds, class LTag>
void
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::
nearest_neighbor(const Point_2& p,
		 Vertex_handle vnear[ag_hierarchy_2__maxlevel]) const
{
  Vertex_handle nearest = 0;
  unsigned int level  = ag_hierarchy_2__maxlevel;

  // find the highest level with enough vertices
  while ( hierarchy[--level]->number_of_vertices() 
	  < ag_hierarchy_2__minsize ) {
    if ( !level ) break;  // do not go below 0
  }
  for (unsigned int i = level+1; i < ag_hierarchy_2__maxlevel; ++i) {
    vnear[i] = 0;
  }

  while ( level > 0 ) {
    vnear[level] = nearest =
      hierarchy[level]->nearest_neighbor(p, nearest);  

    CGAL_assertion( !hierarchy[level]->is_infinite(vnear[level]) );
    // go at the same vertex on level below
    nearest =  nearest->down();
    --level;
  }
  vnear[0] =
    hierarchy[level]->nearest_neighbor(p, nearest);  // at level 0
}

template<class Gt, class Agds, class LTag>
int
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::
random_level()
{  
  boost::geometric_distribution<> proba(1.0/ag_hierarchy_2__ratio);
  boost::variate_generator<boost::rand48&, boost::geometric_distribution<> > die(random, proba);

  return (std::min)(die(), (int)ag_hierarchy_2__maxlevel)-1;
}

template<class Gt, class Agds, class LTag>
void
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::
file_input(std::istream& is)
{
  typedef std::vector<Vertex_handle>  Vertex_vector;

  // firstly, read the Apollonius graph at each level
  clear();
  for (unsigned int i = 0; i < ag_hierarchy_2__maxlevel; ++i) {
    hierarchy[i]->file_input(is);
  }

  Vertex_vector* V = new Vertex_vector[ag_hierarchy_2__maxlevel];

  // secondly, create the map of vertex indices
  for (unsigned int i = 0; i < ag_hierarchy_2__maxlevel; ++i) {
    V[i].resize(hierarchy[i]->number_of_vertices());
    int j = 0;
    for (Finite_vertices_iterator vit = hierarchy[i]->finite_vertices_begin();
	 vit != hierarchy[i]->finite_vertices_end(); ++vit, ++j) {
      V[i][j] = vit;
    }
  }

  // read the correspondences between up and down pointers and set
  // them appropriately
  for (unsigned int i = 0; i < ag_hierarchy_2__maxlevel; ++i) {
    unsigned int level;
    int vnum;
    is >> level >> vnum;
    for (int k = 0; k < vnum; k++) {
      int ithis, iup, idown;
      is >> ithis >> idown >> iup;
      if ( idown != -1 ) { V[i][ithis]->set_down(V[i-1][idown]); }
      if ( iup != -1 )   { V[i][ithis]->set_up(V[i+1][iup]); }
    }
  }

  delete[] V;
}


template<class Gt, class Agds, class LTag>
void
Apollonius_graph_hierarchy_2<Gt,Agds,LTag>::
file_output(std::ostream& os) const
{
  typedef std::map<Vertex_handle,int> Vertex_map;

  // write each level of the hierarchy
  for (unsigned int i = 0; i < ag_hierarchy_2__maxlevel; ++i) {
    hierarchy[i]->file_output(os);
    if ( is_ascii(os) ) { os << std::endl << std::endl; }
  }

  Vertex_map* V = new Vertex_map[ag_hierarchy_2__maxlevel];

  // create the map of vertex indices
  for (unsigned int i = 0; i < ag_hierarchy_2__maxlevel; ++i) {
    int inum = 0;
    for (Finite_vertices_iterator vit = hierarchy[i]->finite_vertices_begin();
	 vit != hierarchy[i]->finite_vertices_end(); ++vit) {
      V[i][vit] = inum++;
    }
  }

  Vertex_map* V_up   = new Vertex_map[ag_hierarchy_2__maxlevel];
  Vertex_map* V_down = new Vertex_map[ag_hierarchy_2__maxlevel];

  // create the map of up and down pointers
  for (unsigned int i = 0; i < ag_hierarchy_2__maxlevel; ++i) {
    for (Finite_vertices_iterator vit = hierarchy[i]->finite_vertices_begin();
	 vit != hierarchy[i]->finite_vertices_end(); ++vit) {
      if ( vit->up() != Vertex_handle() ) {
	V_up[i][vit] = V[i+1][vit->up()];
      } else {
	V_up[i][vit] = -1;
      }

      if ( vit->down() != Vertex_handle() ) {
	V_down[i][vit] = V[i-1][vit->down()];
      } else {
	V_down[i][vit] = -1;
      }
    }
  }

  // write up and down pointer info
  if ( is_ascii(os) ) { os << std::endl << std::endl; }
  for (unsigned int i = 0; i < ag_hierarchy_2__maxlevel; ++i) {
    os << i;
    if ( is_ascii(os) ) { os << " "; }
    os << hierarchy[i]->number_of_vertices();
    if ( is_ascii(os) ) { os << std::endl; }
    for (Finite_vertices_iterator vit = hierarchy[i]->finite_vertices_begin();
	 vit != hierarchy[i]->finite_vertices_end(); ++vit) {
      os << V[i][vit];
      if ( is_ascii(os) ) { os << " "; }
      os << V_down[i][vit];
      if ( is_ascii(os) ) { os << " "; }
      os << V_up[i][vit];
      if ( is_ascii(os) ) { os << std::endl; }
    }
    if ( is_ascii(os) ) { os << std::endl << std::endl; }
  }

  delete[] V;
  delete[] V_up;
  delete[] V_down;
}

} //namespace CGAL


#endif // CGAL_APOLLONIUS_GRAPH_HIERARCHY_2_IMPL_H