1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
|
// Copyright (c) 2009,2010,2011 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Ophir Setter <ophir.setter@cs.au.ac.il>
#ifndef CGAL_ARR_GEODESIC_ARC_ON_SPHERE_PARTITION_TRAITS_2_H
#define CGAL_ARR_GEODESIC_ARC_ON_SPHERE_PARTITION_TRAITS_2_H
/*! \file
* The partition traits class for geodesic arcs on the sphere enables
* the partition of geodesic polygons to convex polygons. It models the
* concept YMonotonePartitionTraits_2.
* This partition of geodesic polygons is garenteed to work only for polygons
* that are contained in a hemisphere and that do not intersect one of the
* boundaries.
* For larger polygons there is a chance that at least one steiner point may
* have to be added; see manuscript by Prof. Dan Halperin from 2008.
* PAY ATTENTION TO THE FACT THAT WE REVERSE THE ROLES OF X AND Y SO IT WILL
* BE EASIER TO IMPLEMENT A MODEL FOR YMonotonePartitionTraits_2 (actually
* implementing XMonotonePartitionTraits_2)
*/
#include <CGAL/Arr_geodesic_arc_on_sphere_traits_2.h>
#include <vector>
namespace CGAL {
template <class T_Kernel, class Container_P =
std::vector<typename Arr_geodesic_arc_on_sphere_traits_2< T_Kernel >::Point_2> >
class Arr_geodesic_arc_on_sphere_partition_traits_2
: public Arr_geodesic_arc_on_sphere_traits_2< T_Kernel >
{
private:
typedef Arr_geodesic_arc_on_sphere_partition_traits_2< T_Kernel > Self;
typedef Arr_geodesic_arc_on_sphere_traits_2< T_Kernel > Base;
public:
/// \name PartitionTraits_2 concept
//@{
typedef typename Base::Point_2 Point_2;
/*! Class to represent polygon. Contain Vertex_const_iterator and access
* functions.
*/
class Polygon_2 : public Container_P
{
public:
typedef typename Container_P::const_iterator Vertex_const_iterator;
Vertex_const_iterator vertices_begin() const
{ return this->begin();}
Vertex_const_iterator vertices_end() const
{ return this->end();}
};
/*! A functor that compares two points lexigoraphically: by x, then by y.
*/
class Less_xy_2
{
protected:
/*! The traits (in case it has state) */
const Self * m_traits;
public:
/*! Constructor
* \param traits the traits (in case it has state)
*/
Less_xy_2(const Self * traits) : m_traits(traits) {}
/*! Compare two points lexigoraphically: by x, then by y.
* We actually reversing the order, so x <--> y.
* \param p1 the first enpoint directional point.
* \param p2 the second endpoint directional point.
* \return true - y(p1) < y(p2);
* true - y(p1) = y(p2) and x(p1) < x(p2);
* false - otherwise.
* \pre p1 does not lie on the boundary.
* \pre p2 does not lie on the boundary.
*/
bool operator()(const Point_2 & p1, const Point_2 & p2) const
{
CGAL_precondition(p1.is_no_boundary());
CGAL_precondition(p2.is_no_boundary());
// compare y and then x (reverse the order of x and y).
Comparison_result res = m_traits->compare_y(p1, p2);
if (res == EQUAL)
return m_traits->compare_x(p1, p2) == SMALLER;
return res == SMALLER;
// return m_traits->compare_xy(p1, p2) == SMALLER;
}
};
Less_xy_2 less_xy_2_object() const { return Less_xy_2(this); }
/*! A functor that compares two points lexigoraphically: by y, then by x.
*/
class Less_yx_2
{
protected:
/*! The traits (in case it has state) */
const Self * m_traits;
public:
/*! Constructor
* \param traits the traits (in case it has state)
*/
Less_yx_2(const Self * traits) : m_traits(traits) {}
/*! Compare two points lexigoraphically: by y, then by x.
* We actually reversing the order, so x <--> y.
* \param p1 the first enpoint directional point.
* \param p2 the second endpoint directional point.
* \return true - x(p1) < x(p2);
* true - x(p1) = x(p2) and y(p1) < y(p2);
* false - otherwise.
* \pre p1 does not lie on the boundary.
* \pre p2 does not lie on the boundary.
*/
bool operator()(const Point_2 & p1, const Point_2 & p2) const
{
CGAL_precondition(p1.is_no_boundary());
CGAL_precondition(p2.is_no_boundary());
// compare x and then y (reverse the order of x and y).
return m_traits->compare_xy(p1, p2) == SMALLER;
}
};
Less_yx_2 less_yx_2_object() const { return Less_yx_2(this); }
/*! A functor that checks orientation of three points.
*/
class Orientation_2
{
protected:
/*! The traits (in case it has state) */
const Self * m_traits;
public:
/*! Constructor
* \param traits the traits (in case it has state)
*/
Orientation_2 (const Self * traits) : m_traits(traits) {}
/*! Checks the orientation between three points.
* We actually reversing the order, so x <--> y.
* \param p
* \param q
* \param r
* \return CGAL::LEFT_TURN - r lies to the "left" of the oriented line l
* defined by p and q (do not forget that x <--> y.
* CGAL::RIGHT_TURN - r lies to the "right" of l
* CGAL::COLLINEAR - r lies on l.
* \pre p does not lie on the boundary.
* \pre q does not lie on the boundary.
* \pre r does not lie on the boundary.
* \pre p and q are not antipodal (from the req. that the whole polygon
* is contained in a hemisphere.
*/
CGAL::Orientation operator()(const Point_2 &p,
const Point_2 &q,
const Point_2 &r) const
{
CGAL_precondition(p.is_no_boundary());
CGAL_precondition(q.is_no_boundary());
CGAL_precondition(r.is_no_boundary());
// the orientation is determined by the relative position of r with
// respect to the plane that contains p and q.
typename Base::Vector_3 normal =
m_traits->construct_cross_product_vector_3_object() (p.vector(),
q.vector());
Oriented_side res = CGAL::sign(normal * r.vector());
return (res == ON_NEGATIVE_SIDE) ? RIGHT_TURN :
((res == ON_POSITIVE_SIDE) ? LEFT_TURN : COLLINEAR);
}
};
Orientation_2 orientation_2_object() const { return Orientation_2(this); }
/*! A functor that checks if three points create a left turn.
* See Orientation_2 above.
*/
class Left_turn_2
{
protected:
const Self * m_traits;
public:
Left_turn_2 (const Self * traits) : m_traits(traits) {}
bool operator()(const Point_2 &p,
const Point_2 &q,
const Point_2 &r) const
{
return m_traits->orientation_2_object()(p, q, r) == LEFT_TURN;
}
};
Left_turn_2 left_turn_2_object() const { return Left_turn_2(this); }
/*! As x switches parts with y (x <--> y) the compare_x_2 from base can
* be used here as compare_y_2.
* */
typedef typename Base::Compare_x_2 Compare_y_2;
Compare_y_2 compare_y_2_object() const {return Base::compare_x_2_object(); }
/*! A functor that compares two points by x coordinate.
*/
class Compare_x_2
{
protected:
/*! The traits (in case it has state) */
const Self * m_traits;
public:
/*! Constructor
* \param traits the traits (in case it has state)
*/
Compare_x_2(const Self * traits) : m_traits(traits) {}
/*! Compare two points by y coordinate.
* We actually reversing the order, so x <--> y.
* \param p1 the first enpoint directional point.
* \param p2 the second endpoint directional point.
* \return SMALLER - x(p1) < x(p2);
* EQUAL - x(p1) = x(p2);
* LARGER - x(p1) > x(p2);
* \pre p1 does not lie on the boundary.
* \pre p2 does not lie on the boundary.
*/
Comparison_result operator()(const Point_2 & p1, const Point_2 & p2) const
{
CGAL_precondition(p1.is_no_boundary());
CGAL_precondition(p2.is_no_boundary());
// compare y and then x (reverse the order of x and y).
return m_traits->compare_y(p1, p2);
}
};
Compare_x_2 compare_x_2_object() const { return Compare_x_2(this); }
//@}
/// \name ConvexPartitionIsValidTraits_2 concept
/// For now, we have a stub implementation. I am not sure how easy it is
/// to create the real implementation.
//@{
struct Is_convex_2
{
template <typename T> Is_convex_2(T) {}
template<class InputIterator>
bool operator ()(InputIterator first, InputIterator beyond) const
{ return true; }
};
Is_convex_2 is_convex_2_object() const { return Is_convex_2(); }
struct Is_valid
{
template <typename T> Is_valid(T) {}
template<class InputIterator>
bool operator ()(InputIterator first, InputIterator beyond) const
{ return true; }
};
// Is_valid is_valid_object() const { return Is_valid(); }
//@}
};
} //namespace CGAL
#endif // CGAL_ARR_GEODESIC_ARC_ON_SPHERE_PARTITION_TRAITS_2_H
// Copyright (c) 2009,2010,2011 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Ophir Setter <ophir.setter@cs.au.ac.il>
#ifndef CGAL_ARR_GEODESIC_ARC_ON_SPHERE_PARTITION_TRAITS_2_H
#define CGAL_ARR_GEODESIC_ARC_ON_SPHERE_PARTITION_TRAITS_2_H
/*! \file
* The partition traits class for geodesic arcs on the sphere enables
* the partition of geodesic polygons to convex polygons. It models the
* concept YMonotonePartitionTraits_2.
* This partition of geodesic polygons is garenteed to work only for polygons
* that are contained in a hemisphere and that do not intersect one of the
* boundaries.
* For larger polygons there is a chance that at least one steiner point may
* have to be added; see manuscript by Prof. Dan Halperin from 2008.
* PAY ATTENTION TO THE FACT THAT WE REVERSE THE ROLES OF X AND Y SO IT WILL
* BE EASIER TO IMPLEMENT A MODEL FOR YMonotonePartitionTraits_2 (actually
* implementing XMonotonePartitionTraits_2)
*/
#include <CGAL/Arr_geodesic_arc_on_sphere_traits_2.h>
#include <vector>
namespace CGAL {
template <class T_Kernel, class Container_P = std::vector<
typename Arr_geodesic_arc_on_sphere_traits_2< T_Kernel >::Point_2> >
class Arr_geodesic_arc_on_sphere_partition_traits_2
: public Arr_geodesic_arc_on_sphere_traits_2< T_Kernel >
{
private:
typedef Arr_geodesic_arc_on_sphere_partition_traits_2< T_Kernel > Self;
typedef Arr_geodesic_arc_on_sphere_traits_2< T_Kernel > Base;
public:
/// \name PartitionTraits_2 concept
//@{
typedef typename Base::Point_2 Point_2;
/*! Class to represent polygon. Contain Vertex_const_iterator and access
* functions.
*/
class Polygon_2 : public Container_P
{
public:
typedef typename Container_P::const_iterator Vertex_const_iterator;
Vertex_const_iterator vertices_begin() const
{ return this->begin();}
Vertex_const_iterator vertices_end() const
{ return this->end();}
};
/*! A functor that compares two points lexigoraphically: by x, then by y.
*/
class Less_xy_2
{
protected:
/*! The traits (in case it has state) */
const Self * m_traits;
public:
/*! Constructor
* \param traits the traits (in case it has state)
*/
Less_xy_2(const Self * traits) : m_traits(traits) {}
/*! Compare two points lexigoraphically: by x, then by y.
* We actually reversing the order, so x <--> y.
* \param p1 the first enpoint directional point.
* \param p2 the second endpoint directional point.
* \return true - y(p1) < y(p2);
* true - y(p1) = y(p2) and x(p1) < x(p2);
* false - otherwise.
* \pre p1 does not lie on the boundary.
* \pre p2 does not lie on the boundary.
*/
bool operator()(const Point_2 & p1, const Point_2 & p2) const
{
CGAL_precondition(p1.is_no_boundary());
CGAL_precondition(p2.is_no_boundary());
// compare y and then x (reverse the order of x and y).
Comparison_result res = m_traits->compare_y(p1, p2);
if (res == EQUAL)
return compare_x(p1, p2) == SMALLER;
return res == SMALLER;
// return m_traits->compare_xy(p1, p2) == SMALLER;
}
};
Less_xy_2 less_xy_2_object() const { return Less_xy_2(this); }
/*! A functor that compares two points lexigoraphically: by y, then by x.
*/
class Less_yx_2
{
protected:
/*! The traits (in case it has state) */
const Self * m_traits;
public:
/*! Constructor
* \param traits the traits (in case it has state)
*/
Less_yx_2(const Self * traits) : m_traits(traits) {}
/*! Compare two points lexigoraphically: by y, then by x.
* We actually reversing the order, so x <--> y.
* \param p1 the first enpoint directional point.
* \param p2 the second endpoint directional point.
* \return true - x(p1) < x(p2);
* true - x(p1) = x(p2) and y(p1) < y(p2);
* false - otherwise.
* \pre p1 does not lie on the boundary.
* \pre p2 does not lie on the boundary.
*/
bool operator()(const Point_2 & p1, const Point_2 & p2) const
{
CGAL_precondition(p1.is_no_boundary());
CGAL_precondition(p2.is_no_boundary());
// compare x and then y (reverse the order of x and y).
return m_traits->compare_xy(p1, p2) == SMALLER;
}
};
Less_yx_2 less_yx_2_object() const { return Less_yx_2(this); }
/*! A functor that checks orientation of three points.
*/
class Orientation_2
{
protected:
/*! The traits (in case it has state) */
const Self * m_traits;
public:
/*! Constructor
* \param traits the traits (in case it has state)
*/
Orientation_2 (const Self * traits) : m_traits(traits) {}
/*! Checks the orientation between three points.
* We actually reversing the order, so x <--> y.
* \param p
* \param q
* \param r
* \return CGAL::LEFT_TURN - r lies to the "left" of the oriented line l
* defined by p and q (do not forget that x <--> y.
* CGAL::RIGHT_TURN - r lies to the "right" of l
* CGAL::COLLINEAR - r lies on l.
* \pre p does not lie on the boundary.
* \pre q does not lie on the boundary.
* \pre r does not lie on the boundary.
* \pre p and q are not antipodal (from the req. that the whole polygon
* is contained in a hemisphere.
*/
CGAL::Orientation operator()(const Point_2 &p,
const Point_2 &q,
const Point_2 &r) const
{
CGAL_precondition(p.is_no_boundary());
CGAL_precondition(q.is_no_boundary());
CGAL_precondition(r.is_no_boundary());
// the orientation is determined by the relative position of r with
// respect to the plane that contains p and q.
typename Base::Vector_3 normal =
m_traits->construct_cross_product_vector_3_object() (p.vector(),
q.vector());
Oriented_side res = m_traits->oriented_side(normal, r);
return (res == ON_NEGATIVE_SIDE) ? RIGHT_TURN :
((res == ON_POSITIVE_SIDE) ? LEFT_TURN : COLLINEAR);
}
};
Orientation_2 orientation_2_object() const { return Orientation_2(this); }
/*! A functor that checks if three points create a left turn.
* See Orientation_2 above.
*/
class Left_turn_2
{
protected:
const Self * m_traits;
public:
Left_turn_2 (const Self * traits) : m_traits(traits) {}
bool operator()(const Point_2 &p,
const Point_2 &q,
const Point_2 &r) const
{
return m_traits->orientation_2_object()(p, q, r) == LEFT_TURN;
}
};
Left_turn_2 left_turn_2_object() const { return Left_turn_2(this); }
/*! As x switches parts with y (x <--> y) the compare_x_2 from base can
* be used here as compare_y_2.
*/
typedef typename Base::Compare_x_2 Compare_y_2;
Compare_y_2 compare_y_2_object() const {return Base::compare_x_2_object(); }
/*! A functor that compares two points by x coordinate.
*/
class Compare_x_2
{
protected:
/*! The traits (in case it has state) */
const Self * m_traits;
public:
/*! Constructor
* \param traits the traits (in case it has state)
*/
Compare_x_2(const Self * traits) : m_traits(traits) {}
/*! Compare two points by y coordinate.
* We actually reversing the order, so x <--> y.
* \param p1 the first enpoint directional point.
* \param p2 the second endpoint directional point.
* \return SMALLER - x(p1) < x(p2);
* EQUAL - x(p1) = x(p2);
* LARGER - x(p1) > x(p2);
* \pre p1 does not lie on the boundary.
* \pre p2 does not lie on the boundary.
*/
Comparison_result operator()(const Point_2 & p1, const Point_2 & p2) const
{
CGAL_precondition(p1.is_no_boundary());
CGAL_precondition(p2.is_no_boundary());
// compare y and then x (reverse the order of x and y).
return m_traits->compare_y(p1, p2);
}
};
Compare_x_2 compare_x_2_object() const { return Compare_x_2(this); }
//@}
/// \name ConvexPartitionIsValidTraits_2 concept
/// For now, we have a stub implementation. I am not sure how easy it is
/// to create the real implementation.
//@{
class Is_convex_2
{
template<class InputIterator>
bool operator ()(InputIterator first, InputIterator beyond) const
{ return true; }
};
Is_convex_2 is_convex_2_object() const { return Is_convex_2(); }
//@}
};
} //namespace CGAL
#endif // CGAL_ARR_GEODESIC_ARC_ON_SPHERE_PARTITION_TRAITS_2_H
|