File: Arr_geodesic_arc_on_sphere_partition_traits_2.h

package info (click to toggle)
cgal 4.5-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 69,700 kB
  • ctags: 118,537
  • sloc: cpp: 571,870; ansic: 110,997; sh: 725; python: 92; makefile: 87
file content (614 lines) | stat: -rw-r--r-- 19,220 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
// Copyright (c) 2009,2010,2011 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$ 
// $Id$ 
// 
//
// Author(s)     : Ophir Setter         <ophir.setter@cs.au.ac.il>


#ifndef CGAL_ARR_GEODESIC_ARC_ON_SPHERE_PARTITION_TRAITS_2_H
#define CGAL_ARR_GEODESIC_ARC_ON_SPHERE_PARTITION_TRAITS_2_H

/*! \file
 * The partition traits class for geodesic arcs on the sphere enables 
 * the partition of geodesic polygons to convex polygons. It models the 
 * concept YMonotonePartitionTraits_2.
 * This partition of geodesic polygons is garenteed to work only for polygons
 * that are contained in a hemisphere and that do not intersect one of the 
 * boundaries. 
 * For larger polygons there is a chance that at least one steiner point may 
 * have to be added; see manuscript by Prof. Dan Halperin from 2008.
 * PAY ATTENTION TO THE FACT THAT WE REVERSE THE ROLES OF X AND Y SO IT WILL
 * BE EASIER TO IMPLEMENT A MODEL FOR YMonotonePartitionTraits_2 (actually
 * implementing XMonotonePartitionTraits_2)
 */


#include <CGAL/Arr_geodesic_arc_on_sphere_traits_2.h>

#include <vector>

namespace CGAL {


template <class T_Kernel, class Container_P =
          std::vector<typename Arr_geodesic_arc_on_sphere_traits_2< T_Kernel >::Point_2> >
class Arr_geodesic_arc_on_sphere_partition_traits_2 
  : public Arr_geodesic_arc_on_sphere_traits_2< T_Kernel >
{
private:
  typedef Arr_geodesic_arc_on_sphere_partition_traits_2< T_Kernel > Self;
  typedef Arr_geodesic_arc_on_sphere_traits_2< T_Kernel >           Base;
 
public:
 
  /// \name PartitionTraits_2 concept
  //@{
 
  typedef typename Base::Point_2                                    Point_2;
 
  /*! Class to represent polygon. Contain Vertex_const_iterator and access 
   *  functions.
   */
  class Polygon_2 : public Container_P
  {
  public:
    typedef typename Container_P::const_iterator         Vertex_const_iterator;
   
    Vertex_const_iterator vertices_begin() const
    { return this->begin();} 
   
    Vertex_const_iterator vertices_end() const
    { return this->end();}
  };

  /*! A functor that compares two points lexigoraphically: by x, then by y.
   */
  class Less_xy_2
  {
  protected:
    /*! The traits (in case it has state) */
    const Self * m_traits;
   
  public:
    /*! Constructor
     * \param traits the traits (in case it has state)
     */
    Less_xy_2(const Self * traits) : m_traits(traits) {}
   
    /*! Compare two points lexigoraphically: by x, then by y.
     *  We actually reversing the order, so x <--> y.
     * \param p1 the first enpoint directional point.
     * \param p2 the second endpoint directional point.
     * \return true - y(p1) < y(p2);
     *         true - y(p1) = y(p2) and x(p1) < x(p2);
     *         false - otherwise.
     * \pre p1 does not lie on the boundary.
     * \pre p2 does not lie on the boundary.
     */
    bool operator()(const Point_2 & p1, const Point_2 & p2) const
    {
      CGAL_precondition(p1.is_no_boundary());
      CGAL_precondition(p2.is_no_boundary());
     
      // compare y and then x (reverse the order of x and y).
      Comparison_result res = m_traits->compare_y(p1, p2);
      if (res == EQUAL) 
        return m_traits->compare_x(p1, p2) == SMALLER;
      return res == SMALLER;
      //     return m_traits->compare_xy(p1, p2) == SMALLER;
    }
  };

  Less_xy_2 less_xy_2_object() const { return Less_xy_2(this); }

  /*! A functor that compares two points lexigoraphically: by y, then by x.
   */
  class Less_yx_2
  {
  protected:
    /*! The traits (in case it has state) */
    const Self * m_traits;
      
  public:

    /*! Constructor
     * \param traits the traits (in case it has state)
     */
    Less_yx_2(const Self * traits) : m_traits(traits) {}


    /*! Compare two points lexigoraphically: by y, then by x.
     *  We actually reversing the order, so x <--> y.
     * \param p1 the first enpoint directional point.
     * \param p2 the second endpoint directional point.
     * \return true - x(p1) < x(p2);
     *         true - x(p1) = x(p2) and y(p1) < y(p2);
     *         false - otherwise.
     * \pre p1 does not lie on the boundary.
     * \pre p2 does not lie on the boundary.
     */
    bool operator()(const Point_2 & p1, const Point_2 & p2) const
    {
      CGAL_precondition(p1.is_no_boundary());
      CGAL_precondition(p2.is_no_boundary());
     
      // compare x and then y (reverse the order of x and y).
      return m_traits->compare_xy(p1, p2) == SMALLER;
    }
  };

  Less_yx_2 less_yx_2_object() const { return Less_yx_2(this); }
 

  /*! A functor that checks orientation of three points.
   */
  class Orientation_2
  {
  protected:
    /*! The traits (in case it has state) */
    const Self * m_traits;
   
  public:

    /*! Constructor
     * \param traits the traits (in case it has state)
     */
    Orientation_2 (const Self * traits) : m_traits(traits) {}

    /*! Checks the orientation between three points.
     *  We actually reversing the order, so x <--> y.
     * \param p 
     * \param q
     * \param r 
     * \return CGAL::LEFT_TURN - r lies to the "left" of the oriented line l 
     *         defined by p and q (do not forget that x <--> y.
     *         CGAL::RIGHT_TURN - r lies to the "right" of l
     *         CGAL::COLLINEAR - r lies on l. 
     * \pre p does not lie on the boundary.
     * \pre q does not lie on the boundary.
     * \pre r does not lie on the boundary.
     * \pre p and q are not antipodal (from the req. that the whole polygon
     *      is contained in a hemisphere.
     */
    CGAL::Orientation operator()(const Point_2 &p,
                                 const Point_2 &q,
                                 const Point_2 &r) const
    {
      CGAL_precondition(p.is_no_boundary());
      CGAL_precondition(q.is_no_boundary());
      CGAL_precondition(r.is_no_boundary());
     
      // the orientation is determined by the relative position of r with 
      // respect to the plane that contains p and q.
      typename Base::Vector_3 normal = 
        m_traits->construct_cross_product_vector_3_object() (p.vector(),
                                                             q.vector());

      Oriented_side res = CGAL::sign(normal * r.vector());

      return (res == ON_NEGATIVE_SIDE) ? RIGHT_TURN : 
        ((res == ON_POSITIVE_SIDE) ? LEFT_TURN : COLLINEAR);
    }
  };

  Orientation_2 orientation_2_object() const { return Orientation_2(this); }

  /*! A functor that checks if three points create a left turn.
   *  See Orientation_2 above.
   */
  class Left_turn_2
  {
  protected:
    const Self * m_traits;
   
  public:
    Left_turn_2 (const Self * traits) : m_traits(traits) {}

    bool operator()(const Point_2 &p,
                    const Point_2 &q,
                    const Point_2 &r) const
    {
      return m_traits->orientation_2_object()(p, q, r) == LEFT_TURN;
    }
  };

  Left_turn_2 left_turn_2_object() const { return Left_turn_2(this); }

  /*! As x switches parts with y (x <--> y) the compare_x_2 from base can
   *  be used here as compare_y_2.
   * */
  typedef typename Base::Compare_x_2              Compare_y_2;
 
  Compare_y_2 compare_y_2_object() const {return Base::compare_x_2_object(); }


  /*! A functor that compares two points by x coordinate.
   */
  class Compare_x_2
  {
  protected:
    /*! The traits (in case it has state) */
    const Self * m_traits;
   
  public:
 
    /*! Constructor
     * \param traits the traits (in case it has state)
     */
    Compare_x_2(const Self * traits) : m_traits(traits) {}
   

    /*! Compare two points by y coordinate.
     *  We actually reversing the order, so x <--> y.
     * \param p1 the first enpoint directional point.
     * \param p2 the second endpoint directional point.
     * \return SMALLER - x(p1) < x(p2);
     *         EQUAL   - x(p1) = x(p2);
     *         LARGER  - x(p1) > x(p2);
     * \pre p1 does not lie on the boundary.
     * \pre p2 does not lie on the boundary.
     */
    Comparison_result operator()(const Point_2 & p1, const Point_2 & p2) const
    {
      CGAL_precondition(p1.is_no_boundary());
      CGAL_precondition(p2.is_no_boundary());
     
      // compare y and then x (reverse the order of x and y).
      return m_traits->compare_y(p1, p2);
    }
  };

  Compare_x_2 compare_x_2_object() const { return Compare_x_2(this); }
 
  //@}
  
  /// \name ConvexPartitionIsValidTraits_2 concept
  /// For now, we have a stub implementation. I am not sure how easy it is
  /// to create the real implementation.
  //@{

  struct Is_convex_2 
  {
    template <typename T> Is_convex_2(T) {}
    
    template<class InputIterator>
    bool operator ()(InputIterator first, InputIterator beyond) const
    { return true; }
  };

  Is_convex_2 is_convex_2_object() const { return Is_convex_2(); }

  struct Is_valid 
  {
    template <typename T> Is_valid(T) {}

    template<class InputIterator>
    bool operator ()(InputIterator first, InputIterator beyond) const
    { return true; }
  };

  // Is_valid is_valid_object() const { return Is_valid(); }
  
  //@}
 
};


} //namespace CGAL

#endif  // CGAL_ARR_GEODESIC_ARC_ON_SPHERE_PARTITION_TRAITS_2_H


// Copyright (c) 2009,2010,2011 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$ 
// $Id$ 
// 
//
// Author(s)     : Ophir Setter         <ophir.setter@cs.au.ac.il>


#ifndef CGAL_ARR_GEODESIC_ARC_ON_SPHERE_PARTITION_TRAITS_2_H
#define CGAL_ARR_GEODESIC_ARC_ON_SPHERE_PARTITION_TRAITS_2_H

/*! \file
 * The partition traits class for geodesic arcs on the sphere enables 
 * the partition of geodesic polygons to convex polygons. It models the 
 * concept YMonotonePartitionTraits_2.
 * This partition of geodesic polygons is garenteed to work only for polygons
 * that are contained in a hemisphere and that do not intersect one of the 
 * boundaries. 
 * For larger polygons there is a chance that at least one steiner point may 
 * have to be added; see manuscript by Prof. Dan Halperin from 2008.
 * PAY ATTENTION TO THE FACT THAT WE REVERSE THE ROLES OF X AND Y SO IT WILL
 * BE EASIER TO IMPLEMENT A MODEL FOR YMonotonePartitionTraits_2 (actually
 * implementing XMonotonePartitionTraits_2)
 */


#include <CGAL/Arr_geodesic_arc_on_sphere_traits_2.h>

#include <vector>

namespace CGAL {


template <class T_Kernel, class Container_P = std::vector<
                            typename Arr_geodesic_arc_on_sphere_traits_2< T_Kernel >::Point_2> >
class Arr_geodesic_arc_on_sphere_partition_traits_2 
  : public Arr_geodesic_arc_on_sphere_traits_2< T_Kernel >
{
private:
  typedef Arr_geodesic_arc_on_sphere_partition_traits_2< T_Kernel > Self;
  typedef Arr_geodesic_arc_on_sphere_traits_2< T_Kernel >           Base;
 
public:
 
  /// \name PartitionTraits_2 concept
  //@{
 
  typedef typename Base::Point_2                                    Point_2;
 
  /*! Class to represent polygon. Contain Vertex_const_iterator and access 
   *  functions.
   */
  class Polygon_2 : public Container_P
  {
  public:
    typedef typename Container_P::const_iterator                     Vertex_const_iterator;
   
    Vertex_const_iterator vertices_begin() const
    { return this->begin();} 
   
    Vertex_const_iterator vertices_end() const
    { return this->end();}
  };
 
  /*! A functor that compares two points lexigoraphically: by x, then by y.
   */
  class Less_xy_2
  {
  protected:
    /*! The traits (in case it has state) */
    const Self * m_traits;
   
  public:

    /*! Constructor
     * \param traits the traits (in case it has state)
     */
    Less_xy_2(const Self * traits) : m_traits(traits) {}
   
    /*! Compare two points lexigoraphically: by x, then by y.
     *  We actually reversing the order, so x <--> y.
     * \param p1 the first enpoint directional point.
     * \param p2 the second endpoint directional point.
     * \return true - y(p1) < y(p2);
     *         true - y(p1) = y(p2) and x(p1) < x(p2);
     *         false - otherwise.
     * \pre p1 does not lie on the boundary.
     * \pre p2 does not lie on the boundary.
     */
    bool operator()(const Point_2 & p1, const Point_2 & p2) const
    {
      CGAL_precondition(p1.is_no_boundary());
      CGAL_precondition(p2.is_no_boundary());
     
      // compare y and then x (reverse the order of x and y).
      Comparison_result res = m_traits->compare_y(p1, p2);
      if (res == EQUAL) 
        return compare_x(p1, p2) == SMALLER;
      return res == SMALLER;
      //     return m_traits->compare_xy(p1, p2) == SMALLER;
    }
  };

  Less_xy_2 less_xy_2_object() const { return Less_xy_2(this); }

  /*! A functor that compares two points lexigoraphically: by y, then by x.
   */
  class Less_yx_2
  {
  protected:
    /*! The traits (in case it has state) */
    const Self * m_traits;
     
  public:

    /*! Constructor
     * \param traits the traits (in case it has state)
     */
    Less_yx_2(const Self * traits) : m_traits(traits) {}

    /*! Compare two points lexigoraphically: by y, then by x.
     *  We actually reversing the order, so x <--> y.
     * \param p1 the first enpoint directional point.
     * \param p2 the second endpoint directional point.
     * \return true - x(p1) < x(p2);
     *         true - x(p1) = x(p2) and y(p1) < y(p2);
     *         false - otherwise.
     * \pre p1 does not lie on the boundary.
     * \pre p2 does not lie on the boundary.
     */
    bool operator()(const Point_2 & p1, const Point_2 & p2) const
    {
      CGAL_precondition(p1.is_no_boundary());
      CGAL_precondition(p2.is_no_boundary());
     
      // compare x and then y (reverse the order of x and y).
      return m_traits->compare_xy(p1, p2) == SMALLER;
    }
  };

  Less_yx_2 less_yx_2_object() const { return Less_yx_2(this); }
 

  /*! A functor that checks orientation of three points.
   */
  class Orientation_2
  {
  protected:
    /*! The traits (in case it has state) */
    const Self * m_traits;
   
  public:
   
    /*! Constructor
     * \param traits the traits (in case it has state)
     */
    Orientation_2 (const Self * traits) : m_traits(traits) {}

    /*! Checks the orientation between three points.
     *  We actually reversing the order, so x <--> y.
     * \param p 
     * \param q
     * \param r 
     * \return CGAL::LEFT_TURN - r lies to the "left" of the oriented line l 
     *         defined by p and q (do not forget that x <--> y.
     *         CGAL::RIGHT_TURN - r lies to the "right" of l
     *         CGAL::COLLINEAR - r lies on l. 
     * \pre p does not lie on the boundary.
     * \pre q does not lie on the boundary.
     * \pre r does not lie on the boundary.
     * \pre p and q are not antipodal (from the req. that the whole polygon
     *      is contained in a hemisphere.
     */
    CGAL::Orientation operator()(const Point_2 &p,
                                 const Point_2 &q,
                                 const Point_2 &r) const
    {
      CGAL_precondition(p.is_no_boundary());
      CGAL_precondition(q.is_no_boundary());
      CGAL_precondition(r.is_no_boundary());
     
      // the orientation is determined by the relative position of r with 
      // respect to the plane that contains p and q.
      typename Base::Vector_3 normal = 
        m_traits->construct_cross_product_vector_3_object() (p.vector(),
                                                             q.vector());

      Oriented_side res = m_traits->oriented_side(normal, r);

      return (res == ON_NEGATIVE_SIDE) ? RIGHT_TURN : 
        ((res == ON_POSITIVE_SIDE) ? LEFT_TURN : COLLINEAR);
    }
  };

  Orientation_2 orientation_2_object() const { return Orientation_2(this); }

  /*! A functor that checks if three points create a left turn.
   *  See Orientation_2 above.
   */
  class Left_turn_2
  {
  protected:
    const Self * m_traits;
   
  public:

    Left_turn_2 (const Self * traits) : m_traits(traits) {}

    bool operator()(const Point_2 &p,
                    const Point_2 &q,
                    const Point_2 &r) const
    {
      return m_traits->orientation_2_object()(p, q, r) == LEFT_TURN;
    }
  };

  Left_turn_2 left_turn_2_object() const { return Left_turn_2(this); }

  /*! As x switches parts with y (x <--> y) the compare_x_2 from base can
   *  be used here as compare_y_2.
   */
  typedef typename Base::Compare_x_2              Compare_y_2;
 
  Compare_y_2 compare_y_2_object() const {return Base::compare_x_2_object(); }

  /*! A functor that compares two points by x coordinate.
   */
  class Compare_x_2
  {
  protected:
    /*! The traits (in case it has state) */
    const Self * m_traits;
      
  public:

    /*! Constructor
     * \param traits the traits (in case it has state)
     */
    Compare_x_2(const Self * traits) : m_traits(traits) {}

    /*! Compare two points by y coordinate.
     *  We actually reversing the order, so x <--> y.
     * \param p1 the first enpoint directional point.
     * \param p2 the second endpoint directional point.
     * \return SMALLER - x(p1) < x(p2);
     *         EQUAL   - x(p1) = x(p2);
     *         LARGER  - x(p1) > x(p2);
     * \pre p1 does not lie on the boundary.
     * \pre p2 does not lie on the boundary.
     */
    Comparison_result operator()(const Point_2 & p1, const Point_2 & p2) const
    {
      CGAL_precondition(p1.is_no_boundary());
      CGAL_precondition(p2.is_no_boundary());
     
      // compare y and then x (reverse the order of x and y).
      return m_traits->compare_y(p1, p2);
    }
  };

  Compare_x_2 compare_x_2_object() const { return Compare_x_2(this); }
 
  //@}
  
  /// \name ConvexPartitionIsValidTraits_2 concept
  /// For now, we have a stub implementation. I am not sure how easy it is
  /// to create the real implementation.
  //@{

  class Is_convex_2 
  {
    template<class InputIterator>
    bool operator ()(InputIterator first, InputIterator beyond) const
    { return true; }
  };

  Is_convex_2 is_convex_2_object() const { return Is_convex_2(); }
 
  //@}
 
};


} //namespace CGAL

#endif  // CGAL_ARR_GEODESIC_ARC_ON_SPHERE_PARTITION_TRAITS_2_H