1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/IO/read_xyz_points.h>
#include <CGAL/Point_with_normal_3.h>
#include <CGAL/property_map.h>
#include <CGAL/Shape_detection_3.h>
#include <iostream>
#include <fstream>
// Type declarations
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::FT FT;
typedef std::pair<Kernel::Point_3, Kernel::Vector_3> Point_with_normal;
typedef std::vector<Point_with_normal> Pwn_vector;
typedef CGAL::First_of_pair_property_map<Point_with_normal> Point_map;
typedef CGAL::Second_of_pair_property_map<Point_with_normal> Normal_map;
// In Efficient_RANSAC_traits the basic types, i.e., Point and Vector types
// as well as iterator type and property maps, are defined.
typedef CGAL::Shape_detection_3::Efficient_RANSAC_traits<Kernel,
Pwn_vector, Point_map, Normal_map> Traits;
typedef CGAL::Shape_detection_3::Efficient_RANSAC<Traits> Efficient_ransac;
typedef CGAL::Shape_detection_3::Cone<Traits> Cone;
typedef CGAL::Shape_detection_3::Cylinder<Traits> Cylinder;
typedef CGAL::Shape_detection_3::Plane<Traits> Plane;
typedef CGAL::Shape_detection_3::Sphere<Traits> Sphere;
typedef CGAL::Shape_detection_3::Torus<Traits> Torus;
int main()
{
// Points with normals.
Pwn_vector points;
// Loads point set from a file.
// read_xyz_points_and_normals takes an OutputIterator for storing the points
// and a property map to store the normal vector with each point.
std::ifstream stream("data/cube.pwn");
if (!stream ||
!CGAL::read_xyz_points_and_normals(stream,
std::back_inserter(points),
Point_map(),
Normal_map()))
{
std::cerr << "Error: cannot read file cube.pwn" << std::endl;
return EXIT_FAILURE;
}
std::cout << points.size() << " points" << std::endl;
// Instantiates shape detection engine.
Efficient_ransac ransac;
// Provides the input data.
ransac.set_input(points);
// Register shapes for detection
ransac.add_shape_factory<Plane>();
ransac.add_shape_factory<Sphere>();
ransac.add_shape_factory<Cylinder>();
ransac.add_shape_factory<Cone>();
ransac.add_shape_factory<Torus>();
// Sets parameters for shape detection.
Efficient_ransac::Parameters parameters;
// Sets probability to miss the largest primitive at each iteration.
parameters.probability = 0.05;
// Detect shapes with at least 500 points.
parameters.min_points = 200;
// Sets maximum Euclidean distance between a point and a shape.
parameters.epsilon = 0.002;
// Sets maximum Euclidean distance between points to be clustered.
parameters.cluster_epsilon = 0.01;
// Sets maximum normal deviation.
// 0.9 < dot(surface_normal, point_normal);
parameters.normal_threshold = 0.9;
// Detects shapes
ransac.detect(parameters);
// Prints number of detected shapes and unassigned points.
std::cout << ransac.shapes().end() - ransac.shapes().begin() << " detected shapes, "
<< ransac.number_of_unassigned_points()
<< " unassigned points." << std::endl;
// Efficient_ransac::shapes() provides
// an iterator range to the detected shapes.
Efficient_ransac::Shape_range shapes = ransac.shapes();
Efficient_ransac::Shape_range::iterator it = shapes.begin();
while (it != shapes.end()) {
// Get specific parameters depending on detected shape.
if (Plane* plane = dynamic_cast<Plane*>(it->get()))
{
Kernel::Vector_3 normal = plane->plane_normal();
std::cout << "Plane with normal " << normal
<< std::endl;
// Plane shape can also be converted to Kernel::Plane_3
std::cout << "Kernel::Plane_3: " << static_cast<Kernel::Plane_3>(*plane) << std::endl;
}
else if (Cylinder* cyl = dynamic_cast<Cylinder*>(it->get()))
{
Kernel::Line_3 axis = cyl->axis();
FT radius = cyl->radius();
std::cout << "Cylinder with axis " << axis
<< " and radius " << radius
<< std::endl;
}
else
{
// Prints the parameters of the detected shape.
// This function is available for any type of shape.
std::cout << (*it)->info() << std::endl;
}
// Proceeds with next detected shape.
it++;
}
return EXIT_SUCCESS;
}
|