File: MCF_Skeleton_sm_example.cpp

package info (click to toggle)
cgal 4.9-1
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 85,584 kB
  • sloc: cpp: 640,841; ansic: 140,696; sh: 708; fortran: 131; makefile: 114; python: 92
file content (70 lines) | stat: -rw-r--r-- 2,432 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/boost/graph/graph_traits_Surface_mesh.h>
#include <CGAL/boost/graph/properties_Surface_mesh.h>
#include <CGAL/Mean_curvature_flow_skeletonization.h>

#include <fstream>

typedef CGAL::Simple_cartesian<double>                        Kernel;
typedef Kernel::Point_3                                       Point;
typedef CGAL::Surface_mesh<Point>                             Triangle_mesh;

typedef boost::graph_traits<Triangle_mesh>::vertex_descriptor vertex_descriptor;

typedef CGAL::Mean_curvature_flow_skeletonization<Triangle_mesh> Skeletonization;
typedef Skeletonization::Skeleton                             Skeleton;

typedef Skeleton::vertex_descriptor                           Skeleton_vertex;
typedef Skeleton::edge_descriptor                             Skeleton_edge;

int main(int argc, char* argv[])
{
  std::ifstream input((argc>1)?argv[1]:"data/elephant.off");
  Triangle_mesh tmesh;
  input >> tmesh;

  Skeleton skeleton;
  Skeletonization mcs(tmesh);

  // 1. Contract the mesh by mean curvature flow.
  mcs.contract_geometry();

  // 2. Collapse short edges and split bad triangles.
  mcs.collapse_edges();
  mcs.split_faces();

  // 3. Fix degenerate vertices.
  mcs.detect_degeneracies();

  // Perform the above three steps in one iteration.
  mcs.contract();

  // Iteratively apply step 1 to 3 until convergence.
  mcs.contract_until_convergence();

  // Convert the contracted mesh into a curve skeleton and
  // get the correspondent surface points
  mcs.convert_to_skeleton(skeleton);

  std::cout << "Number of vertices of the skeleton: " << boost::num_vertices(skeleton) << "\n";
  std::cout << "Number of edges of the skeleton: " << boost::num_edges(skeleton) << "\n";

  // Output all the edges of the skeleton.
  std::ofstream output("skel.cgal");
  BOOST_FOREACH(Skeleton_edge e, edges(skeleton))
  {
    const Point& s = skeleton[source(e, skeleton)].point;
    const Point& t = skeleton[target(e, skeleton)].point;
    output << "2 "<< s << " " << t << "\n";
  }
  output.close();

  // Output skeleton points and the corresponding surface points
  output.open("correspondance.cgal");
  BOOST_FOREACH(Skeleton_vertex v, vertices(skeleton))
    BOOST_FOREACH(vertex_descriptor vd, skeleton[v].vertices)
      output << "2 " << skeleton[v].point << "  " << get(CGAL::vertex_point, tmesh, vd)  << "\n";

  return 0;
}