File: convert_nef_polyhedron_to_polygon_mesh.h

package info (click to toggle)
cgal 5.2-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 121,084 kB
  • sloc: cpp: 742,056; ansic: 182,102; sh: 647; python: 411; makefile: 280; javascript: 110
file content (384 lines) | stat: -rw-r--r-- 14,524 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
// Copyright (c) 2016 GeometryFactory (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v5.2/Nef_3/include/CGAL/boost/graph/convert_nef_polyhedron_to_polygon_mesh.h $
// $Id: convert_nef_polyhedron_to_polygon_mesh.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s)     : Sebastien Loriot

#ifndef CGAL_BOOST_GRAPH_NEF_POLYHEDRON_TO_POLYGON_MESH_H
#define CGAL_BOOST_GRAPH_NEF_POLYHEDRON_TO_POLYGON_MESH_H

#include <CGAL/license/Nef_3.h>

#include <CGAL/boost/graph/helpers.h>
#include <CGAL/algorithm.h>
#include <CGAL/Polygon_mesh_processing/polygon_soup_to_polygon_mesh.h>
#include <CGAL/circulator.h>
#include <CGAL/Cartesian_converter.h>
#include <boost/unordered_map.hpp>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Triangulation_2_projection_traits_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_2.h>
#include <CGAL/Triangulation_face_base_with_info_2.h>
#include <CGAL/Kernel/global_functions_3.h>


namespace CGAL{

namespace nef_to_pm{

// Visitor used to collect and index vertices of a shell
template<class Nef_polyhedron, class PointRange, class Converter>
struct Shell_vertex_index_visitor
{
  typedef boost::unordered_map<
    typename Nef_polyhedron::Vertex_const_handle, std::size_t> Vertex_index_map;
  typedef typename PointRange::value_type Point_3;
  PointRange& points;
  Vertex_index_map vertex_indices;
  const Converter& converter;

  Shell_vertex_index_visitor(PointRange& points, const Converter& converter)
    :points(points), converter(converter)
  {}

  void visit(typename Nef_polyhedron::Vertex_const_handle vh)
  {
    std::pair<typename Vertex_index_map::iterator, bool> insert_res =
      vertex_indices.insert( std::make_pair(vh, points.size()) );
    if (insert_res.second)
      points.push_back( converter(vh->point()));
  }
  void visit(typename Nef_polyhedron::Halfedge_const_handle )
  {}
  void visit(typename Nef_polyhedron::Halffacet_const_handle )
  {}
  void visit(typename Nef_polyhedron::SHalfedge_const_handle )
  {}
  void visit(typename Nef_polyhedron::SHalfloop_const_handle )
  {}
  void visit(typename Nef_polyhedron::SFace_const_handle )
  {}
};

struct FaceInfo2
{
  FaceInfo2() : visited(false) {}
  bool visited;
};

//Visitor used to collect polygons
template <class Nef_polyhedron, typename PolygonRange>
struct Shell_polygons_visitor
{
  typedef boost::unordered_map<typename Nef_polyhedron::Vertex_const_handle, std::size_t> Vertex_index_map;
  typedef typename PolygonRange::value_type Polygon;
  Vertex_index_map& vertex_indices;
  PolygonRange& polygons;
  bool triangulate_all_faces;

  Shell_polygons_visitor(Vertex_index_map& vertex_indices,
                         PolygonRange& polygons,
                         bool triangulate_all_faces)
    : vertex_indices( vertex_indices )
    , polygons(polygons)
    , triangulate_all_faces(triangulate_all_faces)
  {}

  std::size_t get_cycle_length( typename Nef_polyhedron::Halffacet_cycle_const_iterator hfc) const
  {
    typename Nef_polyhedron::SHalfedge_around_facet_const_circulator hc_start(hfc), hc_end(hc_start);
    std::size_t i=0;
    CGAL_For_all(hc_start,hc_end)
    {
      ++i;
    }
    return i;
  }

  void visit(typename Nef_polyhedron::Halffacet_const_handle opposite_facet)
  {
    bool is_marked=opposite_facet->incident_volume()->mark();

    CGAL_assertion(Nef_polyhedron::Infi_box::is_standard(opposite_facet->plane()));

    typename Nef_polyhedron::SHalfedge_const_handle se;
    typename Nef_polyhedron::Halffacet_cycle_const_iterator fc;

    typename Nef_polyhedron::Halffacet_const_handle f = opposite_facet->twin();

    if (std::next(f->facet_cycles_begin())==f->facet_cycles_end())
    {
      std::size_t cycle_length = 3;
      if (triangulate_all_faces)
        cycle_length = get_cycle_length(f->facet_cycles_begin());
      switch(cycle_length)
      {
        case 4:
        {
          //collect vertices
          std::vector<typename Nef_polyhedron::Vertex_const_handle> v;
          fc = f->facet_cycles_begin();
          se = typename Nef_polyhedron::SHalfedge_const_handle(fc);
          CGAL_assertion(se!=0);
          typename Nef_polyhedron::SHalfedge_around_facet_const_circulator
            hc_start(se), hc_end(hc_start);
          // insert the vertex indices of the new polygon
          CGAL_For_all(hc_start,hc_end)
            v.push_back(hc_start->source()->center_vertex());

          if( CGAL::cross_product(v[1]->point()-v[0]->point(),v[1]->point()-v[2]->point()) *
              CGAL::cross_product(v[3]->point()-v[2]->point(),v[3]->point()-v[0]->point())
          >
             CGAL::cross_product(v[2]->point()-v[1]->point(),v[3]->point()-v[2]->point()) *
             CGAL::cross_product(v[0]->point()-v[3]->point(),v[1]->point()-v[0]->point()))
          {
            if (is_marked)
            {
              polygons.push_back( Polygon() );
              polygons.back().push_back(vertex_indices[v[0]]);
              polygons.back().push_back(vertex_indices[v[1]]);
              polygons.back().push_back(vertex_indices[v[2]]);
              polygons.push_back( Polygon() );
              polygons.back().push_back(vertex_indices[v[0]]);
              polygons.back().push_back(vertex_indices[v[2]]);
              polygons.back().push_back(vertex_indices[v[3]]);
            }
            else
            {
              polygons.push_back( Polygon() );
              polygons.back().push_back(vertex_indices[v[1]]);
              polygons.back().push_back(vertex_indices[v[0]]);
              polygons.back().push_back(vertex_indices[v[2]]);
              polygons.push_back( Polygon() );
              polygons.back().push_back(vertex_indices[v[2]]);
              polygons.back().push_back(vertex_indices[v[0]]);
              polygons.back().push_back(vertex_indices[v[3]]);
            }
          }
          else
          {
            if (is_marked)
            {
              polygons.push_back( Polygon() );
              polygons.back().push_back(vertex_indices[v[0]]);
              polygons.back().push_back(vertex_indices[v[1]]);
              polygons.back().push_back(vertex_indices[v[3]]);
              polygons.push_back( Polygon() );
              polygons.back().push_back(vertex_indices[v[3]]);
              polygons.back().push_back(vertex_indices[v[1]]);
              polygons.back().push_back(vertex_indices[v[2]]);
            }
            else
            {
              polygons.push_back( Polygon() );
              polygons.back().push_back(vertex_indices[v[0]]);
              polygons.back().push_back(vertex_indices[v[3]]);
              polygons.back().push_back(vertex_indices[v[1]]);
              polygons.push_back( Polygon() );
              polygons.back().push_back(vertex_indices[v[1]]);
              polygons.back().push_back(vertex_indices[v[3]]);
              polygons.back().push_back(vertex_indices[v[2]]);
            }
          }
          return;
        }
        case 3:
        {
          // create a new polygon
          polygons.push_back( Polygon() );
          fc = f->facet_cycles_begin();
          se = typename Nef_polyhedron::SHalfedge_const_handle(fc);
          CGAL_assertion(se!=0);
          typename Nef_polyhedron::SHalfedge_around_facet_const_circulator
            hc_start(se), hc_end(hc_start);
          // insert the vertex indices of the new polygon
          CGAL_For_all(hc_start,hc_end)
            polygons.back().push_back(vertex_indices[hc_start->source()->center_vertex()]);
          if (!is_marked)
            std::reverse(polygons.back().begin(), polygons.back().end());
          return;
        }
        default:
          break;
      }
    }

    // cases where a cdt is needed
    typedef typename Nef_polyhedron::Kernel Kernel;
    typedef Triangulation_2_projection_traits_3<Kernel>            P_traits;
    typedef Triangulation_vertex_base_with_info_2<std::size_t, P_traits> Vb;
    typedef Triangulation_face_base_with_info_2<FaceInfo2,P_traits>     Fbb;
    typedef Constrained_triangulation_face_base_2<P_traits,Fbb>          Fb;
    typedef Triangulation_data_structure_2<Vb,Fb>                       TDS;
    typedef Exact_predicates_tag                                       Itag;
    typedef Constrained_Delaunay_triangulation_2<P_traits, TDS, Itag>   CDT;

    P_traits p_traits(opposite_facet->plane().orthogonal_vector());
    CDT cdt(p_traits);

    // insert each connected component of the boundary of the face as
    // a polygonal constraints
    typename Nef_polyhedron::Halffacet_cycle_const_iterator
      hfc_start=f->facet_cycles_begin(), hfc_end=f->facet_cycles_end();
    CGAL_For_all(hfc_start, hfc_end)
    {
      fc=hfc_start;
      se = typename Nef_polyhedron::SHalfedge_const_handle(fc);
      CGAL_assertion(se!=0);
      typename Nef_polyhedron::SHalfedge_around_facet_const_circulator
        hc_start(se), hc_end(hc_start);
      // collect contour vertices
      std::vector< typename CDT::Vertex_handle > polygon;
      CGAL_For_all(hc_start,hc_end)
      {
        typename CDT::Vertex_handle vh=cdt.insert(hc_start->source()->center_vertex()->point());
        vh->info() = vertex_indices[hc_start->source()->center_vertex()];
        polygon.push_back(vh);
      }
      std::size_t nb_constraints = polygon.size();
      polygon.push_back(polygon.front());
      for(std::size_t i=0; i<nb_constraints; ++i)
        cdt.insert_constraint(polygon[i], polygon[i+1]);
    }
    //look for a triangle inside the domain of the face
    typename CDT::Face_handle fh = cdt.infinite_face();
    fh->info().visited=true;
    std::vector<typename CDT::Edge> queue;
    for (int i=0; i<3; ++i)
      queue.push_back(typename CDT::Edge(fh, i) );
    while(true)
    {
      typename CDT::Edge e = queue.back();
      queue.pop_back();
      e=cdt.mirror_edge(e);
      if (e.first->info().visited) continue;
      if (cdt.is_constrained(e))
      {
        queue.clear();
        queue.push_back(e);
        break;
      }
      else
      {
        for(int i=1; i<3; ++i)
        {
          typename CDT::Edge candidate(e.first, (e.second+i)%3);
          if (!candidate.first->neighbor(candidate.second)->info().visited)
            queue.push_back( candidate );
        }
        e.first->info().visited=true;
      }
    }
    // now extract triangles inside the face
    while(!queue.empty())
    {
      typename CDT::Edge e = queue.back();
      queue.pop_back();
      if (e.first->info().visited) continue;
      e.first->info().visited=true;
      polygons.push_back(Polygon());
      if (is_marked)
        for (int i=2; i>=0; --i)
          polygons.back().push_back(e.first->vertex(i)->info());
      else
        for (int i=0; i<3; ++i)
          polygons.back().push_back(e.first->vertex(i)->info());

      for(int i=1; i<3; ++i)
      {
        typename CDT::Edge candidate(e.first, (e.second+i)%3);
        if (!cdt.is_constrained(candidate) &&
            !candidate.first->neighbor(candidate.second)->info().visited)
        {
          queue.push_back( cdt.mirror_edge(candidate) );
        }
      }
    }
  }

  void visit(typename Nef_polyhedron::SFace_const_handle)
  {}
  void visit(typename Nef_polyhedron::Halfedge_const_handle)
  {}
  void visit(typename Nef_polyhedron::Vertex_const_handle)
  {}
  void visit(typename Nef_polyhedron::SHalfedge_const_handle)
  {}
  void visit(typename Nef_polyhedron::SHalfloop_const_handle)
  {}
};

template <typename PointRange, class Nef_polyhedron, class Converter, typename PolygonRange>
void collect_polygon_mesh_info(
  PointRange& points,
  PolygonRange& polygons,
  Nef_polyhedron& nef,
  typename Nef_polyhedron::Shell_entry_const_iterator shell,
  const Converter& converter,
  bool triangulate_all_faces)
{
  // collect points and set vertex indices
  Shell_vertex_index_visitor<Nef_polyhedron, PointRange, Converter> vertex_index_visitor(points, converter);
  nef.visit_shell_objects(typename Nef_polyhedron::SFace_const_handle(shell), vertex_index_visitor);

  // collect polygons
  Shell_polygons_visitor<Nef_polyhedron, PolygonRange> polygon_visitor(
    vertex_index_visitor.vertex_indices,
    polygons,
    triangulate_all_faces);
  nef.visit_shell_objects(typename Nef_polyhedron::SFace_const_handle(shell), polygon_visitor);
}

} //end of namespace nef_to_pm

template < class Nef_polyhedron, typename PolygonRange, typename PointRange>
void convert_nef_polyhedron_to_polygon_soup(const Nef_polyhedron& nef,
                                                  PointRange& points,
                                                  PolygonRange& polygons,
                                                  bool triangulate_all_faces = false)
{
  typedef typename Nef_polyhedron::Point_3 Point_3;
  typedef typename Kernel_traits<Point_3>::Kernel Nef_Kernel;
  typedef typename PointRange::value_type Out_Point;
  typedef typename Kernel_traits<Out_Point>::Kernel Output_kernel;

  typedef Cartesian_converter<Nef_Kernel, Output_kernel> Converter;
  typename Nef_polyhedron::Volume_const_iterator vol_it = nef.volumes_begin(),
                                                 vol_end = nef.volumes_end();
  if ( Nef_polyhedron::Infi_box::extended_kernel() ) ++vol_it; // skip Infi_box
  CGAL_assertion ( vol_it != vol_end );
  ++vol_it; // skip unbounded volume

  Converter to_output;
  for (;vol_it!=vol_end;++vol_it)
    nef_to_pm::collect_polygon_mesh_info(points,
                                         polygons,
                                         nef,
                                         vol_it->shells_begin(),
                                         to_output,
                                         triangulate_all_faces);
}

template <class Nef_polyhedron, class Polygon_mesh>
void convert_nef_polyhedron_to_polygon_mesh(const Nef_polyhedron& nef, Polygon_mesh& pm, bool triangulate_all_faces = false)
{
  typedef typename boost::property_traits<typename boost::property_map<Polygon_mesh, vertex_point_t>::type>::value_type PM_Point;

  std::vector<PM_Point> points;
  std::vector<std::vector<std::size_t> > polygons;
  convert_nef_polyhedron_to_polygon_soup(nef, points, polygons, triangulate_all_faces);
  Polygon_mesh_processing::polygon_soup_to_polygon_mesh(points, polygons, pm);
}


} //end of namespace CGAL



#endif // CGAL_BOOST_GRAPH_NEF_POLYHEDRON_TO_POLYGON_MESH_H