File: selection.h

package info (click to toggle)
cgal 5.2-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 121,084 kB
  • sloc: cpp: 742,056; ansic: 182,102; sh: 647; python: 411; makefile: 280; javascript: 110
file content (1156 lines) | stat: -rw-r--r-- 42,248 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
// Copyright (c) 2015  GeometryFactory (France). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v5.2/BGL/include/CGAL/boost/graph/selection.h $
// $Id: selection.h a84927d 2020-07-23T17:15:44+02:00 Laurent Rineau
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s)     : Sebastien Loriot
//

#ifndef CGAL_BOOST_GRAPH_SELECTION_H
#define CGAL_BOOST_GRAPH_SELECTION_H

#include <boost/graph/graph_traits.hpp>
#include <CGAL/boost/graph/iterator.h>
#include <boost/unordered_set.hpp>

#include <CGAL/boost/graph/Dual.h>
#include <boost/graph/filtered_graph.hpp>
#include <boost/iterator/filter_iterator.hpp>

#include <CGAL/boost/graph/alpha_expansion_graphcut.h>
#include <CGAL/squared_distance_3.h>

namespace CGAL {


// Operation on faces
namespace internal{
// extract edges in non-selected faces (boundary excluded but one)
template <class FaceRange, class FaceGraph, class IsFaceSelectedPMap, class OutputIterator>
OutputIterator
extract_selection_boundary(
  FaceRange& face_range,
  FaceGraph& fg,
  IsFaceSelectedPMap is_selected,
  OutputIterator out)
{
  typedef boost::graph_traits<FaceGraph> GT;
  typedef typename GT::face_descriptor face_descriptor;
  typedef typename GT::halfedge_descriptor halfedge_descriptor;

  for(face_descriptor fd : face_range)
  {
    for(halfedge_descriptor h :
        halfedges_around_face(halfedge(fd, fg), fg) )
    {
      halfedge_descriptor opp_hd = opposite(h, fg);
      face_descriptor opp_fd = face( opp_hd, fg );
      if (opp_fd!=GT::null_face())
      {
        if ( !get(is_selected, opp_fd) )
          *out++=opp_hd;
      }
      else{
        opp_hd=opposite( next( opp_hd, fg), fg );
        if ( !get( is_selected, face(opp_hd, fg) ) )
          *out++=opp_hd;
      }
    }
  }
  return out;
}

template <typename GeomTraits,
          typename FaceGraph,
          typename IsSelectedMap,
          typename FaceIndexMap,
          typename VertexPointMap>
struct Regularization_graph
{
  typedef boost::graph_traits<FaceGraph> GT;
  typedef typename GT::face_descriptor fg_face_descriptor;
  typedef typename GT::face_iterator fg_face_iterator;
  typedef typename GT::halfedge_descriptor fg_halfedge_descriptor;
  typedef typename GT::edge_descriptor fg_edge_descriptor;
  typedef typename GT::edge_iterator fg_edge_iterator;
  typedef typename GT::vertex_descriptor fg_vertex_descriptor;

  typedef fg_face_descriptor vertex_descriptor;
  typedef fg_face_iterator vertex_iterator;
  typedef fg_edge_descriptor edge_descriptor;
  typedef boost::undirected_tag directed_category;
  typedef boost::disallow_parallel_edge_tag edge_parallel_category;
  typedef boost::edge_list_graph_tag traversal_category;

  struct Filter_border_edges
  {
    FaceGraph* fg;
    Filter_border_edges (FaceGraph& fg) : fg (&fg) { }
    bool operator() (const fg_edge_descriptor ed) const
    {
      return !is_border (ed, *fg);
    }
  };

  typedef boost::filter_iterator<Filter_border_edges, fg_edge_iterator> edge_iterator;

  struct Vertex_label_map
  {
    typedef vertex_descriptor key_type;
    typedef std::size_t value_type;
    typedef std::size_t& reference;
    typedef boost::lvalue_property_map_tag category;

    Regularization_graph* rg;

    Vertex_label_map (Regularization_graph* rg)
      : rg (rg) { }

    friend reference get (const Vertex_label_map& map, key_type k)
    {
      return (map.rg->labels)[get(map.rg->face_index_map,k)];
    }
    friend void put (const Vertex_label_map& map, key_type k, const value_type& v)
    {
      (map.rg->labels)[get(map.rg->face_index_map,k)] = v;
    }
  };

  struct Vertex_label_probability_map
  {
    typedef vertex_descriptor key_type;
    typedef std::vector<double> value_type;
    typedef value_type reference;
    typedef boost::readable_property_map_tag category;

    const Regularization_graph* rg;

    Vertex_label_probability_map (const Regularization_graph* rg)
      : rg (rg)
    { }

    friend reference get (const Vertex_label_probability_map& pmap, key_type fd)
    {
      double value = (1. - pmap.rg->weight) * pmap.rg->area (fd) / pmap.rg->total_area;

      std::vector<double> out(2);
      if (get(pmap.rg->is_selected_map, fd))
      {
        if (pmap.rg->prevent_unselection)
          out[0] = (std::numeric_limits<double>::max)();
        else
          out[0] = value;
        out[1] = 0.;
      }
      else
      {
        out[0] = 0.;
        out[1] = value;
      }

      return out;
    }
  };

  struct Edge_cost_map
  {
    typedef edge_descriptor key_type;
    typedef double value_type;
    typedef value_type reference;
    typedef boost::readable_property_map_tag category;

    const Regularization_graph* rg;

    Edge_cost_map (const Regularization_graph* rg)
      : rg (rg) { }

    friend reference get (const Edge_cost_map& pmap, key_type ed)
    {
      fg_vertex_descriptor esource = source(ed, pmap.rg->fg);
      fg_vertex_descriptor etarget = target(ed, pmap.rg->fg);

      // Cost
      double edge_length = std::sqrt(CGAL::squared_distance (get (pmap.rg->vertex_point_map, esource),
                                                             get (pmap.rg->vertex_point_map, etarget)));
      return pmap.rg->weight * edge_length / pmap.rg->total_length;
    }
  };

  FaceGraph& fg;
  IsSelectedMap is_selected_map;
  FaceIndexMap face_index_map;
  VertexPointMap vertex_point_map;
  double total_length;
  double total_area;
  double weight;
  bool prevent_unselection;
  std::vector<std::size_t> labels;

  Regularization_graph (FaceGraph& fg,
                        IsSelectedMap is_selected_map,
                        FaceIndexMap face_index_map,
                        VertexPointMap vertex_point_map,
                        double weight,
                        bool prevent_unselection)
    : fg (fg),
      is_selected_map (is_selected_map),
      face_index_map (face_index_map),
      vertex_point_map (vertex_point_map),
      total_length(0),
      total_area(0),
      weight (weight),
      prevent_unselection (prevent_unselection)
  {
    labels.reserve(num_faces(fg));
    std::size_t nb_selected = 0;
    for (fg_face_descriptor fd : faces(fg))
    {
      if (get(is_selected_map,fd))
      {
        labels.push_back(1);
        ++ nb_selected;
      }
      else
        labels.push_back(0);
    }

    // Compute normalization factors
    for (fg_edge_descriptor ed : edges(fg))
      total_length += length (ed);
    for (fg_face_descriptor fd : faces(fg))
      total_area += area (fd);
  }

  double length (fg_edge_descriptor ed) const
  {
    fg_vertex_descriptor esource = source(ed, fg);
    fg_vertex_descriptor etarget = target(ed, fg);
    return approximate_sqrt (typename GeomTraits::Compute_squared_distance_3()
                             (get (vertex_point_map, esource),
                              get (vertex_point_map, etarget)));
  }

  double area (fg_face_descriptor fd) const
  {
    fg_halfedge_descriptor hd = halfedge (fd, fg);
    fg_halfedge_descriptor nhd = next (hd, fg);

    return approximate_sqrt (typename GeomTraits::Compute_squared_area_3()
                             (get (vertex_point_map, source (hd, fg)),
                              get (vertex_point_map, target (hd, fg)),
                              get (vertex_point_map, target (nhd, fg))));
  }

  friend CGAL::Iterator_range<vertex_iterator>
  vertices (const Regularization_graph& graph)
  {
    return faces (graph.fg);
  }

  friend std::size_t num_vertices (const Regularization_graph& graph) { return num_faces(graph.fg); }

  friend CGAL::Iterator_range<edge_iterator>
  edges (const Regularization_graph& graph)
  {
    return CGAL::make_range (boost::make_filter_iterator
                             (Filter_border_edges(graph.fg),
                              begin(edges(graph.fg)), end(edges(graph.fg))),
                             boost::make_filter_iterator
                             (Filter_border_edges(graph.fg),
                              end(edges(graph.fg)), end(edges(graph.fg))));
  }

  friend vertex_descriptor source (edge_descriptor ed, const Regularization_graph& graph)
  {
    return face (halfedge (ed, graph.fg), graph.fg);
  }

  friend vertex_descriptor target (edge_descriptor ed, const Regularization_graph& graph)
  {
    return face (opposite(halfedge (ed, graph.fg), graph.fg), graph.fg);
  }

  Vertex_label_map vertex_label_map() { return Vertex_label_map(this); }
  Vertex_label_probability_map vertex_label_probability_map() const
  { return Vertex_label_probability_map(this); }
  Edge_cost_map edge_cost_map() const
  { return Edge_cost_map(this); }
};


} //end of namespace internal


/*!
\ingroup PkgBGLSelectionFct
augments a selection with faces of `fg` that are adjacent
to a face in `selection`. This process is applied `k` times considering
all faces added in the previous steps.
Two faces are said to be adjacent if they share a vertex or an edge.
Each new face added in the selection is added exactly once in `out`.
\tparam FaceRange a range of face descriptors, model of `Range`.
          Its iterator type is `InputIterator`.
\tparam FaceGraph a model of `FaceGraph`.
\tparam IsFaceSelectedPMap a model of `ReadWritePropertyMap` with `boost::graph_traits<FaceGraph>::%face_descriptor`
        as key type and `bool` as value type.
\tparam OutputIterator an output iterator accepting face descriptors.
\param selection the initial selection of faces that will be expanded.
\param fg the graph containing the selected faces.
\param k the number of times the expansion procedure is iteratively applied.
\param is_selected indicates if a face is part of the selection. It is updated by the function
       to accommodate new faces added to the selection.
\param out new faces added to the selection are added exactly once in `out`.
*/
template <class FaceRange, class FaceGraph, class IsFaceSelectedPMap, class OutputIterator>
OutputIterator
expand_face_selection(
  const FaceRange& selection,
  FaceGraph& fg,
  unsigned int k,
  IsFaceSelectedPMap is_selected,
  OutputIterator out)
{
  typedef boost::graph_traits<FaceGraph> GT;
  typedef typename GT::face_descriptor face_descriptor;
  typedef typename GT::halfedge_descriptor halfedge_descriptor;

  std::vector<face_descriptor> current_selection(selection.begin(), selection.end());
  for (unsigned int i=0; i<k; ++i)
  {
    //extract faces on the boundary of the selection
    std::vector<halfedge_descriptor> selection_boundary_halfedges;
    internal::extract_selection_boundary(current_selection, fg, is_selected,
                                         std::back_inserter(selection_boundary_halfedges));

    if (selection_boundary_halfedges.empty()) break;

    //collect faces around the target vertex of the selection boundary halfedges
    std::set<face_descriptor> new_selection_set;
    for(halfedge_descriptor hd : selection_boundary_halfedges)
    {
      face_descriptor fd=face(hd, fg);
      while( !get(is_selected,fd) )
      {
        new_selection_set.insert(fd);
        hd=opposite( next(hd, fg), fg );
        fd=face(hd, fg);
        if ( face(hd, fg)==GT::null_face() ) break;
      }
    }

    // extract unique selection
    std::vector<face_descriptor> new_selection;
    for(face_descriptor fd : new_selection_set)
    {
      *out++=fd;
      new_selection.push_back(fd);
      put( is_selected, fd, true );
    }
    current_selection.swap(new_selection);
  }
  return out;
}

/*!
\ingroup PkgBGLSelectionFct
diminishes a selection of faces from faces adjacent to a non-selected face.
This process is applied `k` times considering all faces removed in the previous steps.
Two faces are said to be adjacent if they share a vertex or an edge.
Each face removed from the selection is added exactly once in `out`.
\tparam FaceRange a range of face descriptors, model of `Range`.
          Its iterator type is `InputIterator`.
\tparam FaceGraph a model of `FaceGraph`.
\tparam IsFaceSelectedPMap a model of `ReadWritePropertyMap` with `boost::graph_traits<FaceGraph>::%face_descriptor`
        as key type and `bool` as value type.
\tparam OutputIterator an output iterator accepting face descriptors.
\param selection the initial selection of faces that will be expanded.
\param fg the graph containing the selected faces.
\param k the number of times the reduction procedure is iteratively applied.
\param is_selected indicates if a face is part of the selection. It is updated by the function
       to accommodate faces removed from the selection.
\param out faces removed from the selection are added exactly once in `out`.
*/
template <class FaceRange, class FaceGraph, class IsFaceSelectedPMap, class OutputIterator>
OutputIterator
reduce_face_selection(
  const FaceRange& selection,
  FaceGraph& fg,
  unsigned int k,
  IsFaceSelectedPMap is_selected,
  OutputIterator out)
{
  typedef boost::graph_traits<FaceGraph> GT;
  typedef typename GT::face_descriptor face_descriptor;
  typedef typename GT::halfedge_descriptor halfedge_descriptor;

  std::vector<face_descriptor> current_selection(selection.begin(), selection.end());
  for (unsigned int i=0; i<k; ++i)
  {
    //extract faces on the boundary of the selection
    std::vector<halfedge_descriptor> selection_boundary_halfedges;
    internal::extract_selection_boundary(current_selection, fg, is_selected,
                                         std::back_inserter(selection_boundary_halfedges));

    if (selection_boundary_halfedges.empty()) break;


    //collect faces around the target vertex of the selection boundary halfedges
    std::set<face_descriptor> elements_to_remove;
    for(halfedge_descriptor hd : selection_boundary_halfedges)
    {
      hd = opposite(hd, fg);
      face_descriptor fd=face( hd, fg );
      while( face(hd, fg)!=GT::null_face() && get(is_selected,fd) )
      {
        elements_to_remove.insert(fd);
        hd=opposite( next(hd, fg), fg );
        fd=face(hd, fg);
      }
    }

    /// update is-selected attribute and output iterator
    for(face_descriptor fd : elements_to_remove)
    {
      *out++=fd;
      put( is_selected, fd, false );
    }

    // update the set of currently selected faces
    std::vector<face_descriptor> new_selection;
    for(face_descriptor fd : current_selection)
      if ( !elements_to_remove.count(fd) )
        new_selection.push_back(fd);
    current_selection.swap(new_selection);
  }
  return out;
}

/*!
  \ingroup PkgBGLSelectionFct

  regularizes a selection in order to minimize the length of the
  border of the selection.

  The alpha expansion algorithm is used (see
  `CGAL::alpha_expansion_graphcut()`) using the length of the edge
  between two faces as the edge cost and the initial
  selected/unselected property of a face as the face cost.

  If `prevent_unselection` is set to `true`, the cost of unselecting a
  face is set to infinity, which forces the regularization to only
  select new faces and ensures that the regularization keeps all
  selected faces.

  \tparam TriangleMesh a model of `FaceGraph`

  \tparam IsSelectedMap a model of `ReadWritePropertyMap` with
  `boost::graph_traits<TriangleMesh>::%face_descriptor` as key type and
  `bool` as value type

  \tparam NamedParameters a sequence of named parameters

  \param mesh the mesh containing the selected faces.

  \param is_selected indicates if a face is part of the selection. It
  is updated by the function to accommodate faces added or removed
  from the selection.

  \param weight sets the tradeoff between data fidelity and
  regularity, ranging from 0 (no regularization at all, selection is
  left unaltered) to 1 (maximum regularization, usually selects or
  unselects everything so that the length of the border of the
  selection is 0)

  \param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below

  \cgalNamedParamsBegin
    \cgalParamNBegin{vertex_point_map}
      \cgalParamDescription{a property map associating points to the vertices of `tm`}
      \cgalParamType{a class model of `ReadWritePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
                     as key type and `%Point_3` as value type}
      \cgalParamDefault{`boost::get(CGAL::vertex_point, tm)`}
      \cgalParamExtra{If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
                      must be available in `TriangleMesh`.}
    \cgalParamNEnd

    \cgalParamNBegin{face_index_map}
      \cgalParamDescription{a property map associating to each face of `tm` a unique index between `0` and `num_faces(tm) - 1`}
      \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%face_descriptor`
                     as key type and `std::size_t` as value type}
      \cgalParamDefault{an automatically indexed internal map}
    \cgalParamNEnd

    \cgalParamNBegin{prevent_unselection}
      \cgalParamDescription{Boolean used to indicate if selection can be only extended or if it can also be shrinked.}
      \cgalParamType{`bool`}
      \cgalParamDefault{`false`}
      \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
    \cgalParamNEnd

    \cgalParamNBegin{geom_traits}
      \cgalParamDescription{an instance of a geometric traits class}
      \cgalParamType{a class model of `Kernel`}
      \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
      \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
    \cgalParamNEnd
  \cgalNamedParamsEnd
*/
template <typename TriangleMesh, typename IsSelectedMap, typename NamedParameters>
void
regularize_face_selection_borders(
  TriangleMesh& mesh,
  IsSelectedMap is_selected,
  double weight,
  const NamedParameters& np)
{
  using parameters::choose_parameter;
  using parameters::get_parameter;

  CGAL_precondition (0.0 <= weight && weight < 1.0);

  typedef boost::graph_traits<TriangleMesh> GT;
  typedef typename GT::face_descriptor mesh_face_descriptor;

  typedef typename GetInitializedFaceIndexMap<TriangleMesh, NamedParameters>::type FaceIndexMap;
  FaceIndexMap face_index_map = CGAL::get_initialized_face_index_map(mesh, np);

  typedef typename GetVertexPointMap<TriangleMesh, NamedParameters>::const_type VertexPointMap;
  VertexPointMap vertex_point_map
    = choose_parameter(get_parameter(np, internal_np::vertex_point),
                       get_const_property_map(vertex_point, mesh));

  typedef typename GetGeomTraits<TriangleMesh, NamedParameters>::type Kernel;

  bool prevent_unselection = choose_parameter(get_parameter(np, internal_np::prevent_unselection),
                                              false);

  internal::Regularization_graph<Kernel, TriangleMesh, IsSelectedMap, FaceIndexMap,
                                 VertexPointMap>
    graph (mesh, is_selected,
           face_index_map,
           vertex_point_map,
           weight,
           prevent_unselection);

  alpha_expansion_graphcut (graph,
                            graph.edge_cost_map(),
                            graph.vertex_label_probability_map(),
                            graph.vertex_label_map(),
                            CGAL::parameters::vertex_index_map
                            (face_index_map));

  for (mesh_face_descriptor fd : faces(mesh))
    put(is_selected, fd, graph.labels[get(face_index_map,fd)]);
}

/// \cond SKIP_IN_MANUAL
// variant with default np
template <typename TriangleMesh, typename IsSelectedMap>
void
regularize_face_selection_borders(
  TriangleMesh& fg,
  IsSelectedMap is_selected,
  double weight)
{
  regularize_face_selection_borders (fg, is_selected, weight,
                                     CGAL::parameters::all_default());
}
/// \endcond

/// \cond SKIP_IN_MANUAL
// TODO: improve and document if useful
//
// Variant of regularization without graphcut but with brut-force
// local expansions. Can be interesting in some cases but too
// experimental/messy so far to be officially integrated.
template <class FaceGraph, class IsSelectedMap, class VertexPointMap>
void
regularize_face_selection_borders(
  FaceGraph& fg,
  IsSelectedMap is_selected,
  VertexPointMap vertex_point_map)
{
  typedef boost::graph_traits<FaceGraph> GT;
  typedef typename GT::face_descriptor fg_face_descriptor;
  typedef typename GT::halfedge_descriptor fg_halfedge_descriptor;
  typedef typename GT::edge_descriptor fg_edge_descriptor;
  typedef typename GT::vertex_descriptor fg_vertex_descriptor;

  // TODO: this is a quick and dirty version, the complexity is
  // crazy and it should be easy to do better (with priority queues,
  // for example)

  auto border_length =
    [&]() -> double
    {
      double out = 0.;
      for(fg_edge_descriptor ed : edges(fg))
      {
        fg_face_descriptor f0 = face (halfedge (ed, fg), fg);
        fg_face_descriptor f1 = face (opposite(halfedge (ed, fg), fg), fg);
        if (get(is_selected,f0) == get(is_selected,f1))
          continue;

        fg_vertex_descriptor esource = source(ed, fg);
        fg_vertex_descriptor etarget = target(ed, fg);

        out += std::sqrt(CGAL::squared_distance (get (vertex_point_map, esource),
                                                 get (vertex_point_map, etarget)));
      }
      return out;
    };

  // First: try edges
  while (true)
  {
    fg_edge_descriptor chosen;
    double length_before = border_length();
    double shortest_length = length_before;

    for (fg_edge_descriptor ed : edges(fg))
    {
      fg_face_descriptor selected = face (halfedge (ed, fg), fg);
      fg_face_descriptor unselected = face (opposite(halfedge (ed, fg), fg), fg);
      if (get(is_selected,selected) == get(is_selected,unselected))
        continue;

      if (get(is_selected, unselected))
        std::swap (selected, unselected);

      put(is_selected, unselected, true);
      double length_after = border_length();

      if (length_after < shortest_length)
      {
        chosen = ed;
        shortest_length = length_after;
      }

      // Cancel
      put(is_selected, unselected, false);
    }

    if (shortest_length == length_before)
      break;

    fg_face_descriptor selected = face (halfedge (chosen, fg), fg);
    fg_face_descriptor unselected = face (opposite(halfedge (chosen, fg), fg), fg);
    if (get(is_selected,selected) == get(is_selected,unselected))
      continue;

    if (get(is_selected, unselected))
      std::swap (selected, unselected);

    put(is_selected, unselected, true);
  }

  // Second: try 1-ring of vertices
  while (true)
  {
    fg_vertex_descriptor chosen;
    double length_before = border_length();
    double shortest_length = length_before;

    for (fg_vertex_descriptor vd : vertices(fg))
    {
      fg_halfedge_descriptor hd = halfedge(vd, fg);
      bool adjacent_to_selected = false, adjacent_to_nonselected = false;
      for (fg_face_descriptor fd : faces_around_target (hd, fg))
      {
        if (get(is_selected, fd))
          adjacent_to_selected = true;
        else
          adjacent_to_nonselected = true;

        if (adjacent_to_selected && adjacent_to_nonselected)
          break;
      }

      if (!(adjacent_to_selected && adjacent_to_nonselected))
        continue;

      std::vector<fg_face_descriptor> newly_selected;
      for (fg_face_descriptor fd : faces_around_target (hd, fg))
      {
        if (!get(is_selected, fd))
        {
          newly_selected.push_back (fd);
          put(is_selected, fd, true);
        }
      }
      double length_after = border_length();

      if (length_after < shortest_length)
      {
        chosen = vd;
        shortest_length = length_after;
      }

      // Cancel
      for (fg_face_descriptor fd : newly_selected)
        put(is_selected, fd, false);
    }

    if (shortest_length == length_before)
      break;

    fg_halfedge_descriptor hd = halfedge (chosen, fg);

    for (fg_face_descriptor fd : faces_around_target (hd, fg))
      put(is_selected, fd, true);
  }
}
/// \endcond


/*!
\ingroup PkgBGLSelectionFct
Discovers and puts in `out` all faces incident to the target vertex
of a halfedge in `hedges`. Faces are put exactly once in `out`.
\tparam HalfedgeRange a range of halfedge descriptors, model of `Range`.
          Its iterator type is `InputIterator`.
\tparam HalfedgeGraph a model of `HalfedgeGraph`.
\tparam OutputIterator an output iterator accepting face descriptors.
\param hedges the range a halfedge descriptors consider during the face selection.
\param fg the graph containing the input halfedges.
\param out faces added to the selection are added exactly once in `out`.
*/
template <class HalfedgeRange, class FaceGraph, class OutputIterator>
OutputIterator
select_incident_faces(
  const HalfedgeRange& hedges,
  FaceGraph& fg,
  OutputIterator out)
{
  typedef boost::graph_traits<FaceGraph> GT;
  typedef typename GT::face_descriptor face_descriptor;
  typedef typename GT::halfedge_descriptor halfedge_descriptor;

  //collect faces around the target vertex of the selection boundary halfedges
  std::set<face_descriptor> selection_set;
  for(halfedge_descriptor hd : hedges)
  {
    halfedge_descriptor first = hd;
    face_descriptor fd=face(hd, fg);
    do
    {
      if ( face(hd, fg)!=GT::null_face() && selection_set.insert(fd).second)
        *out++=fd;
      hd=opposite( next(hd, fg), fg );
      fd=face(hd, fg);
    }while( hd!=first );
  }

  return out;
}

/*!
\ingroup PkgBGLSelectionFct
augments a selection with edges of `fg` that are adjacent
to an edge in `selection`. This process is applied `k` times considering
all edges added in the previous steps.
Two edges are said to be adjacent if they are incident to the same face or vertex.
Each new edge added in the selection is added exactly once in `out`.
\tparam EdgeRange a range of edge descriptors, model of `Range`.
          Its iterator type is `InputIterator`.
\tparam FaceGraph a model of `FaceGraph`.
\tparam IsEdgeSelectedPMap a model of `ReadWritePropertyMap` with `boost::graph_traits<FaceGraph>::%edge_descriptor`
        as key type and `bool` as value type.
\tparam OutputIterator an output iterator accepting edge descriptors.
\param selection the initial selection of edges that will be expanded.
\param fg the graph containing the selected edges.
\param k the number of times the expansion procedure is iteratively applied.
\param is_selected indicates if an edge is part of the selection. It is updated by the function
       to accommodate new edges added to the selection.
\param out new edges added to the selection are added exactly once in `out`.
*/
template <class EdgeRange, class HalfedgeGraph, class IsEdgeSelectedPMap, class OutputIterator>
OutputIterator
expand_edge_selection(
  const EdgeRange& selection,
  HalfedgeGraph& fg,
  unsigned int k,
  IsEdgeSelectedPMap is_selected,
  OutputIterator out)
{
  typedef boost::graph_traits<HalfedgeGraph> GT;
  typedef typename GT::edge_descriptor edge_descriptor;
  typedef typename GT::halfedge_descriptor halfedge_descriptor;
  std::vector<edge_descriptor> current_selection(selection.begin(), selection.end());
  for (unsigned int i=0; i<k; ++i)
  {
    if (current_selection.empty()) break;

    //collect adjacent edges not already selected
    std::set<edge_descriptor> new_selection_set;
    for(edge_descriptor ed : current_selection)
    {
      halfedge_descriptor hdi=halfedge(ed,fg);
      for(halfedge_descriptor hd : halfedges_around_source( hdi, fg))
      {
        edge_descriptor ned=edge(hd, fg);
        if (!get(is_selected, ned)) new_selection_set.insert(ned);
      }
      for(halfedge_descriptor hd : halfedges_around_target( hdi, fg))
      {
        edge_descriptor ned=edge(hd, fg);
        if (!get(is_selected, ned)) new_selection_set.insert(ned);
      }
    }

    // extract unique selection
    std::vector<edge_descriptor> new_selection;
    for(edge_descriptor ed : new_selection_set)
    {
      *out++=ed;
      new_selection.push_back(ed);
      put( is_selected, ed, true );
    }
    current_selection.swap(new_selection);
  }
  return out;
}

/*!
\ingroup PkgBGLSelectionFct
diminishes a selection of edges from edges adjacent to a non-selected edge.
This process is applied `k` times considering all edges removed in the previous steps.
Two edges are said to be adjacent if they are incident to the same face or vertex.
Each edge removed from the selection is added exactly once in `out`.
\tparam EdgeRange a range of edge descriptors, model of `Range`.
          Its iterator type is `InputIterator`.
\tparam FaceGraph a model of `FaceGraph`.
\tparam IsEdgeSelectedPMap a model of `ReadWritePropertyMap` with `boost::graph_traits<FaceGraph>::%edge_descriptor`
        as key type and `bool` as value type.
\tparam OutputIterator an output iterator accepting edge descriptors.
\param selection the initial selection of edges that will be reduced.
\param fg the graph containing the selected edges.
\param k the number of times the reduction procedure is iteratively applied.
\param is_selected indicates if an edge is part of the selection. It is updated by the function
       to accommodate edges removed from the selection.
\param out edges removed from the selection are added exactly once in `out`.
*/
template <class EdgeRange, class HalfedgeGraph, class IsEdgeSelectedPMap, class OutputIterator>
OutputIterator
reduce_edge_selection(
  const EdgeRange& selection ,
  HalfedgeGraph& fg,
  unsigned int k,
  IsEdgeSelectedPMap is_selected,
  OutputIterator out)
{
  typedef boost::graph_traits<HalfedgeGraph> GT;
  typedef typename GT::halfedge_descriptor halfedge_descriptor;
  typedef typename GT::edge_descriptor edge_descriptor;
  typedef typename GT::vertex_descriptor vertex_descriptor;

  // extract the set of vertices on the border
  std::set<vertex_descriptor> unique_vertex_set;
  for(edge_descriptor ed : selection)
  {
    halfedge_descriptor hd=halfedge(ed,fg);
    for(halfedge_descriptor nhd : halfedges_around_source( hd, fg))
    {
      edge_descriptor ned=edge(nhd, fg);
      if (!get(is_selected, ned)){
        unique_vertex_set.insert(source(hd,fg));
        break;
      }
    }
    for(halfedge_descriptor nhd : halfedges_around_target( hd, fg))
    {
      edge_descriptor ned=edge(nhd, fg);
      if (!get(is_selected, ned)){
        unique_vertex_set.insert(target(hd,fg));
        break;
      }
    }
  }

  std::vector<vertex_descriptor> current_selection_border(unique_vertex_set.begin(), unique_vertex_set.end());
  for (unsigned int i=0; i<k; ++i)
  {
    if (current_selection_border.empty()) break;

    //collect incident edges selected
    std::set<edge_descriptor> edges_to_deselect;
    unique_vertex_set.clear();
    for(vertex_descriptor vd : current_selection_border)
      for(halfedge_descriptor hd : halfedges_around_target( halfedge(vd,fg), fg))
      {
        edge_descriptor ed = edge(hd, fg);
        if (get(is_selected, ed)){
          edges_to_deselect.insert(ed);
          unique_vertex_set.insert(source(hd, fg));
        }
      }

    // extract unique selection
    for(edge_descriptor ed : edges_to_deselect)
    {
      *out++=ed;
      put( is_selected, ed, false );
    }

    current_selection_border.assign(unique_vertex_set.begin(), unique_vertex_set.end());
  }
  return out;
}

/*!
\ingroup PkgBGLSelectionFct
augments a selection with vertices of `fg` that are adjacent
to a vertex in `selection`. This process is applied `k` times considering
all vertices added in the previous steps.
Two vertices are said to be adjacent if they are part of the same face.
Each new vertex added in the selection is added exactly once in `out`.
\tparam VertexRange a range of vertex descriptors, model of `Range`.
          Its iterator type is `InputIterator`.
\tparam FaceGraph a model of `FaceGraph`.
\tparam IsVertexSelectedPMap a model of `ReadWritePropertyMap` with `boost::graph_traits<FaceGraph>::%vertex_descriptor`
        as key type and `bool` as value type.
\tparam OutputIterator an output iterator accepting vertex descriptors.
\param selection the initial selection of vertices that will be expanded.
\param fg the graph containing the selected vertices.
\param k the number of times the expansion procedure is iteratively applied.
\param is_selected indicates if a vertex is part of the selection. It is updated by the function
       to accommodate new vertices added to the selection.
\param out new vertices added to the selection are added exactly once in `out`.
*/
template <class VertexRange, class HalfedgeGraph, class IsVertexSelectedPMap, class OutputIterator>
OutputIterator
expand_vertex_selection(
  const VertexRange& selection,
  HalfedgeGraph& fg,
  unsigned int k,
  IsVertexSelectedPMap is_selected,
  OutputIterator out)
{
  typedef boost::graph_traits<HalfedgeGraph> GT;
  typedef typename GT::vertex_descriptor vertex_descriptor;
  std::vector<vertex_descriptor> current_selection(selection.begin(), selection.end());
  for (unsigned int i=0; i<k; ++i)
  {
    if (current_selection.empty()) break;

    //collect adjacent vertices not already selected
    std::set<vertex_descriptor> new_selection_set;
    for(vertex_descriptor vd : current_selection)
      for(vertex_descriptor nvd : vertices_around_target( halfedge(vd,fg), fg))
        if (!get(is_selected, nvd)) new_selection_set.insert(nvd);

    // extract unique selection
    std::vector<vertex_descriptor> new_selection;
    for(vertex_descriptor vd : new_selection_set)
    {
      *out++=vd;
      new_selection.push_back(vd);
      put( is_selected, vd, true );
    }
    current_selection.swap(new_selection);
  }
  return out;
}

/*!
\ingroup PkgBGLSelectionFct
diminishes a selection of vertices from vertices adjacent to a non-selected vertex.
This process is applied `k` times considering all vertices removed in the previous steps.
Two vertices are said to be adjacent if they are part of the same face.
Each vertex removed from the selection is added exactly once in `out`.
\tparam VertexRange a range of vertex descriptors, model of `Range`.
          Its iterator type is `InputIterator`.
\tparam FaceGraph a model of `FaceGraph`.
\tparam IsVertexSelectedPMap a model of `ReadWritePropertyMap` with `boost::graph_traits<FaceGraph>::%vertex_descriptor`
        as key type and `bool` as value type.
\tparam OutputIterator an output iterator accepting vertex descriptors.
\param selection the initial selection of vertices that will be reduced.
\param fg the graph containing the selected vertices.
\param k the number of times the reduction procedure is iteratively applied.
\param is_selected indicates if a vertex is part of the selection. It is updated by the function
       to accommodate vertices removed from the selection.
\param out vertices removed from the selection are added exactly once in `out`.
*/
template <class VertexRange, class HalfedgeGraph, class IsVertexSelectedPMap, class OutputIterator>
OutputIterator
reduce_vertex_selection(
  const VertexRange& selection,
  HalfedgeGraph& fg,
  unsigned int k,
  IsVertexSelectedPMap is_selected,
  OutputIterator out)
{
  typedef boost::graph_traits<HalfedgeGraph> GT;
  typedef typename GT::vertex_descriptor vertex_descriptor;

  // collect vertices incident to a selected one
  std::set<vertex_descriptor> unique_vertex_set;
  for(vertex_descriptor vd : selection)
    for(vertex_descriptor nvd : vertices_around_target( halfedge(vd,fg), fg))
        if (!get(is_selected, nvd)) unique_vertex_set.insert(nvd);

  std::vector<vertex_descriptor> current_selection_border(unique_vertex_set.begin(), unique_vertex_set.end());
  for (unsigned int i=0; i<k; ++i)
  {
    if (current_selection_border.empty()) break;

    //collect adjacent vertices selected
    std::set<vertex_descriptor> vertices_to_deselect;
    for(vertex_descriptor vd : current_selection_border)
      for(vertex_descriptor nvd : vertices_around_target( halfedge(vd,fg), fg))
        if (get(is_selected, nvd)) vertices_to_deselect.insert(nvd);

    // extract unique selection
    std::vector<vertex_descriptor> new_selection_border;
    for(vertex_descriptor vd : vertices_to_deselect)
    {
      *out++=vd;
      new_selection_border.push_back(vd);
      put( is_selected, vd, false );
    }
    current_selection_border.swap(new_selection_border);
  }
  return out;
}

/**
 * \ingroup PkgBGLSelectionFct
 *
 * Expands a selection of faces so that their removal does not create any non manifold vertex.
 * For each vertex that is incident to a selected face, we turn around that vertex and check
 * if there is exactly one set of consecutive selected faces. If not, additional faces around
 * that vertex are selected to match this condition.
 *
 * @tparam TriangleMesh a model of `FaceGraph` that is triangulated.
 * @tparam FaceRange a range of `boost::graph_traits<TriangleMesh>::%face_descriptor`,
 * with an iterator type model of `ForwardIterator`.
 * @tparam  IsSelectedMap a model of `ReadWritePropertyMap` with
 * `boost::graph_traits<TriangleMesh>::%face_descriptor` as key and `bool` as value.

 * @param tm the triangle mesh.
 * @param faces_to_be_deleted the range of selected faces.
 * @param is_selected a property map containing the selected-or-not status of each face of `tm`.
 * It must associate `true` to each face of `faces_to_be_deleted` and `false` to any other face of `tm`.
 * It will be modified if the face selection must be expanded.
 *
 **/
template<class TriangleMesh, class FaceRange, class IsSelectedMap>
void expand_face_selection_for_removal(const FaceRange& faces_to_be_deleted,
                                       TriangleMesh& tm,
                                       IsSelectedMap is_selected)
{
  typedef typename boost::graph_traits<TriangleMesh>::vertex_descriptor vertex_descriptor;
  typedef typename boost::graph_traits<TriangleMesh>::face_descriptor face_descriptor;
  typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor halfedge_descriptor;

  boost::unordered_set<vertex_descriptor> vertices_queue;

  // collect vertices belonging to at least a triangle that will be removed
  for(face_descriptor fd : faces_to_be_deleted)
  {
    halfedge_descriptor h = halfedge(fd, tm);
    vertices_queue.insert( target(h, tm) );
    vertices_queue.insert( target(next(h, tm), tm) );
    vertices_queue.insert( target(prev(h, tm), tm) );
  }

  while (!vertices_queue.empty())
  {
    vertex_descriptor vd = *vertices_queue.begin();
    vertices_queue.erase( vertices_queue.begin() );

    // make sure hd is not a border halfedge
    halfedge_descriptor hd = halfedge(vd, tm);
    while(is_border(hd,tm) || ( !get(is_selected, face(hd, tm))) )
    {
      hd = opposite( next(hd, tm), tm);
      CGAL_assertion( hd != halfedge(vd, tm) );
    }

    // set hd to the last selected face of a connected component
    // of selected faces around a vertex
    halfedge_descriptor start = hd;
    halfedge_descriptor next_around_vertex = opposite( next(hd, tm), tm);
    while(is_border(next_around_vertex,tm) || get(is_selected, face(next_around_vertex, tm) ) )
    {
      hd = next_around_vertex;
      next_around_vertex = opposite( next(hd, tm), tm);
      if (hd==start) break;
    }
    if ( is_border(next_around_vertex,tm) || get(is_selected, face(next_around_vertex, tm) ) ) continue; //all incident faces will be removed

    while( true )
    {
      // collect non-selected faces
      std::vector<halfedge_descriptor> faces_traversed;
      bool non_selected_face_range_has_boundary = false; // handle non-manifold situations when crossing a border
      do
      {
        faces_traversed.push_back(next_around_vertex);
        next_around_vertex = opposite( next(next_around_vertex, tm), tm);
        if (is_border(next_around_vertex,tm))
        {
          next_around_vertex = opposite( next(next_around_vertex, tm), tm);
          if (!get(is_selected, face(next_around_vertex, tm) ))
          {
            non_selected_face_range_has_boundary=true; // always non-manifold after removal of the selection
            break;
          }
        }
        CGAL_assertion(!is_border(next_around_vertex,tm));
      }
      while( !get(is_selected, face(next_around_vertex, tm) ) );

      if (!non_selected_face_range_has_boundary)
      {
        // go over the connected components of faces to remove
        do{
          if (next_around_vertex==start)
            break;
          next_around_vertex = opposite( next(next_around_vertex, tm), tm);
        }
        while(is_border(next_around_vertex,tm) || get(is_selected, face(next_around_vertex, tm) ) );

        if (next_around_vertex==start)
          break;
      }
      // else we simply mark the range of traversed faces and start a new range after the border

      for(halfedge_descriptor f_hd : faces_traversed)
      {
        assert(target(f_hd, tm) == vd);
        put(is_selected, face(f_hd, tm), true);
        vertices_queue.insert( target( next(f_hd, tm), tm) );
        vertices_queue.insert( source(f_hd, tm) );
      }
    }
  }
}

//todo: take non-manifold vertices into account.
template<class PolygonMesh, class FaceRange>
bool is_selection_a_topological_disk(const FaceRange& face_selection,
                                           PolygonMesh& pm)
{
  typedef typename boost::graph_traits<PolygonMesh>::vertex_descriptor vertex_descriptor;
  typedef typename boost::graph_traits<PolygonMesh>::face_descriptor face_descriptor;
  typedef typename boost::graph_traits<PolygonMesh>::halfedge_descriptor halfedge_descriptor;
  typedef typename boost::graph_traits<PolygonMesh>::edge_descriptor edge_descriptor;
  boost::unordered_set<vertex_descriptor> sel_vertices;
  boost::unordered_set<edge_descriptor> sel_edges;
  for(face_descriptor f : face_selection)
  {
    for(halfedge_descriptor h : halfedges_around_face(halfedge(f, pm), pm))
    {
      sel_vertices.insert(target(h, pm));
      sel_edges.insert(edge(h,pm));
    }
  }
  return (sel_vertices.size() - sel_edges.size() + face_selection.size() == 1);
}
} //end of namespace CGAL

#endif //CGAL_BOOST_GRAPH_SELECTION_H