File: AABB_face_graph_triangle_example.cpp

package info (click to toggle)
cgal 6.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 141,840 kB
  • sloc: cpp: 797,081; ansic: 203,398; sh: 490; python: 411; makefile: 286; javascript: 174
file content (54 lines) | stat: -rw-r--r-- 1,625 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
// Author(s) : Pierre Alliez

#include <iostream>

#include <CGAL/Simple_cartesian.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits_3.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/AABB_face_graph_triangle_primitive.h>

typedef CGAL::Simple_cartesian<double> K;
typedef K::FT FT;
typedef K::Point_3 Point;
typedef K::Segment_3 Segment;
typedef CGAL::Polyhedron_3<K> Polyhedron;
typedef CGAL::AABB_face_graph_triangle_primitive<Polyhedron> Primitive;
typedef CGAL::AABB_traits_3<K, Primitive> Traits;
typedef CGAL::AABB_tree<Traits> Tree;

template <class Kernel, class FaceGraph>
void run(const FaceGraph& graph){
  typename Kernel::Point_3 p(0.2, 0.2, 0.2);
  typename Kernel::Point_3 q(1.0, 1.0, 1.0);

  // constructs the AABB tree and the internal search tree for
  // efficient distance queries.
  Tree tree( faces(graph).first, faces(graph).second, graph);

  // counts #intersections with a triangle query
  Segment segment_query(p,q);
  std::cout << tree.number_of_intersected_primitives(segment_query)
      << " intersections(s) with triangle" << std::endl;

  assert( tree.number_of_intersected_primitives(segment_query)== 1 );

  // computes the closest point from a query point
  typename Kernel::Point_3 point_query(2.0, 2.0, 2.0);
  typename Kernel::Point_3 closest = tree.closest_point(point_query);

  std::cerr << "closest point is: " << closest << std::endl;
}

int main()
{
  Point p(1.0, 0.0, 0.0);
  Point q(0.0, 1.0, 0.0);
  Point r(0.0, 0.0, 1.0);
  Point s(0.0, 0.0, 0.0);
  Polyhedron polyhedron;
  polyhedron.make_tetrahedron(p, q, r, s);

  run<K>(polyhedron);
  return EXIT_SUCCESS;
}