File: gis_tutorial_example.cpp

package info (click to toggle)
cgal 6.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 141,840 kB
  • sloc: cpp: 797,081; ansic: 203,398; sh: 490; python: 411; makefile: 286; javascript: 174
file content (748 lines) | stat: -rw-r--r-- 26,109 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Projection_traits_xy_3.h>

#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/Triangulation_vertex_base_with_info_2.h>
#include <CGAL/Triangulation_face_base_with_info_2.h>

#include <CGAL/boost/graph/graph_traits_Delaunay_triangulation_2.h>
#include <CGAL/boost/graph/copy_face_graph.h>

#include <CGAL/Point_set_3.h>
#include <CGAL/Point_set_3/IO.h>
#include <CGAL/compute_average_spacing.h>

#include <CGAL/Surface_mesh.h>
#include <CGAL/Polygon_mesh_processing/locate.h>

#include <CGAL/Polygon_mesh_processing/triangulate_hole.h>
#include <CGAL/Polygon_mesh_processing/border.h>
#include <CGAL/Polygon_mesh_processing/remesh.h>

#include <boost/graph/adjacency_list.hpp>
#include <CGAL/boost/graph/split_graph_into_polylines.h>

#include <CGAL/IO/WKT.h>

#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Constrained_triangulation_plus_2.h>

#include <CGAL/Polyline_simplification_2/simplify.h>
#include <CGAL/Polyline_simplification_2/Squared_distance_cost.h>

#include <CGAL/Classification.h>

#include <CGAL/Random.h>

#include <fstream>
#include <queue>

#include "include/Color_ramp.h"

///////////////////////////////////////////////////////////////////
//! [TIN DS]

using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel;
using Projection_traits = CGAL::Projection_traits_xy_3<Kernel>;
using Point_2 = Kernel::Point_2;
using Point_3 = Kernel::Point_3;
using Segment_3 = Kernel::Segment_3;

// Triangulated Irregular Network
using TIN = CGAL::Delaunay_triangulation_2<Projection_traits>;

//! [TIN DS]
///////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////
//! [TIN_with_info DS]

// Triangulated Irregular Network (with info)
using Point_set = CGAL::Point_set_3<Point_3>;
using Vbi = CGAL::Triangulation_vertex_base_with_info_2 <Point_set::Index, Projection_traits>;
using Fbi = CGAL::Triangulation_face_base_with_info_2<int, Projection_traits>;
using TDS = CGAL::Triangulation_data_structure_2<Vbi, Fbi>;
using TIN_with_info = CGAL::Delaunay_triangulation_2<Projection_traits, TDS>;

//! [TIN_with_info DS]
///////////////////////////////////////////////////////////////////

namespace Classification = CGAL::Classification;

#ifdef CGAL_LINKED_WITH_TBB
using Concurrency_tag = CGAL::Parallel_tag;
#else
using Concurrency_tag = CGAL::Sequential_tag;
#endif

///////////////////////////////////////////////////////////////////
//! [Contouring functions]

bool face_has_isovalue (TIN::Face_handle fh, double isovalue)
{
  bool above = false, below = false;
  for (int i = 0; i < 3; ++ i)
  {
    // Face has isovalue if one of its vertices is above and another
    // one below
    if (fh->vertex(i)->point().z() > isovalue)
      above = true;
    if (fh->vertex(i)->point().z() < isovalue)
      below = true;
  }

  return (above && below);
}

Segment_3 isocontour_in_face (TIN::Face_handle fh, double isovalue)
{
  Point_3 source;
  Point_3 target;
  bool source_found = false;

  for (int i = 0; i < 3; ++ i)
  {
    Point_3 p0 = fh->vertex((i+1) % 3)->point();
    Point_3 p1 = fh->vertex((i+2) % 3)->point();

    // Check if the isovalue crosses segment (p0,p1)
    if ((p0.z() - isovalue) * (p1.z() - isovalue) > 0)
      continue;

    double zbottom = p0.z();
    double ztop = p1.z();
    if (zbottom > ztop)
    {
      std::swap (zbottom, ztop);
      std::swap (p0, p1);
    }

    // Compute position of segment vertex
    double ratio = (isovalue - zbottom) / (ztop - zbottom);
    Point_3 p = CGAL::barycenter (p0, (1 - ratio), p1,ratio);

    if (source_found)
      target = p;
    else
    {
      source = p;
      source_found = true;
    }
  }

  return Segment_3 (source, target);
}


//! [Contouring functions]
///////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////
//! [Contouring visitor]

template <typename Graph>
class Polylines_visitor
{
private:
  std::vector<std::vector<Point_3> >& polylines;
  Graph& graph;

public:

  Polylines_visitor (Graph& graph, std::vector<std::vector<Point_3> >& polylines)
    : polylines (polylines), graph(graph) { }

  void start_new_polyline()
  {
    polylines.push_back (std::vector<Point_3>());
  }

  void add_node (typename Graph::vertex_descriptor vd)
  {
    polylines.back().push_back (graph[vd]);
  }

  void end_polyline()
  {
    // filter small polylines
    if (polylines.back().size() < 50)
      polylines.pop_back();
  }
};

//! [Contouring visitor]
///////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////
//! [CDT]

namespace PS = CGAL::Polyline_simplification_2;
using CDT_vertex_base = PS::Vertex_base_2<Projection_traits>;
using CDT_face_base = CGAL::Constrained_triangulation_face_base_2<Projection_traits>;
using CDT_TDS = CGAL::Triangulation_data_structure_2<CDT_vertex_base, CDT_face_base>;
using CDT = CGAL::Constrained_Delaunay_triangulation_2<Projection_traits, CDT_TDS>;
using CTP = CGAL::Constrained_triangulation_plus_2<CDT>;

//! [CDT]
///////////////////////////////////////////////////////////////////

int main (int argc, char** argv)
{
  const std::string fname = argc != 2 ? CGAL::data_file_path("points_3/b9_training.ply") : argv[1];
  if (argc != 2)
  {
    std::cerr << "Usage: " << argv[0] << " points.ply" << std::endl;
    std::cerr << "Running with default value " << fname << "\n";
  }

  ///////////////////////////////////////////////////////////////////
  //! [Init DSM]

  // Read points
  std::ifstream ifile (fname, std::ios_base::binary);
  CGAL::Point_set_3<Point_3> points;
  ifile >> points;
  std::cerr << points.size() << " point(s) read" << std::endl;

  // Create DSM
  TIN dsm (points.points().begin(), points.points().end());

  //! [Init DSM]
  ///////////////////////////////////////////////////////////////////

  ///////////////////////////////////////////////////////////////////
  //! [Save DSM]

  using Mesh = CGAL::Surface_mesh<Point_3>;

  Mesh dsm_mesh;
  CGAL::copy_face_graph (dsm, dsm_mesh);
  std::ofstream dsm_ofile ("dsm.ply", std::ios_base::binary);
  CGAL::IO::set_binary_mode (dsm_ofile);
  CGAL::IO::write_PLY (dsm_ofile, dsm_mesh);
  dsm_ofile.close();

  //! [Save DSM]
  ///////////////////////////////////////////////////////////////////

  ///////////////////////////////////////////////////////////////////
  //! [TIN_with_info]

  auto idx_to_point_with_info
    = [&](const Point_set::Index& idx) -> std::pair<Point_3, Point_set::Index>
      {
        return std::make_pair (points.point(idx), idx);
      };

  TIN_with_info tin_with_info
    (boost::make_transform_iterator (points.begin(), idx_to_point_with_info),
     boost::make_transform_iterator (points.end(), idx_to_point_with_info));

  //! [TIN_with_info]
  ///////////////////////////////////////////////////////////////////

  ///////////////////////////////////////////////////////////////////
  //! [Components]

  double spacing = CGAL::compute_average_spacing<Concurrency_tag>(points, 6);
  spacing *= 2;

  auto face_height
    = [&](const TIN_with_info::Face_handle fh) -> double
      {
        double out = 0.;
        for (int i = 0; i < 3; ++ i)
          out = (std::max) (out, CGAL::abs(fh->vertex(i)->point().z() - fh->vertex((i+1)%3)->point().z()));
        return out;
      };

  // Initialize faces info
  for (TIN_with_info::Face_handle fh : tin_with_info.all_face_handles())
    if (tin_with_info.is_infinite(fh) || face_height(fh) > spacing) // Filtered faces are given info() = -2
      fh->info() = -2;
    else // Pending faces are given info() = -1;
      fh->info() = -1;

  // Flooding algorithm
  std::vector<int> component_size;
  for (TIN_with_info::Face_handle fh : tin_with_info.finite_face_handles())
  {
    if (fh->info() != -1)
      continue;

    std::queue<TIN_with_info::Face_handle> todo;
    todo.push(fh);

    int size = 0;
    while (!todo.empty())
    {
      TIN_with_info::Face_handle current = todo.front();
      todo.pop();

      if (current->info() != -1)
        continue;
      current->info() = int(component_size.size());
      ++ size;

      for (int i = 0; i < 3; ++ i)
        todo.push (current->neighbor(i));
    }

    component_size.push_back (size);
  }

  std::cerr << component_size.size() << " connected component(s) found" << std::endl;

  //! [Components]
  ///////////////////////////////////////////////////////////////////

  ///////////////////////////////////////////////////////////////////
  //! [Save TIN with info]

  Mesh tin_colored_mesh;

  Mesh::Property_map<Mesh::Face_index, CGAL::IO::Color>
    color_map = tin_colored_mesh.add_property_map<Mesh::Face_index, CGAL::IO::Color>("f:color").first;

  CGAL::copy_face_graph (tin_with_info, tin_colored_mesh,
                         CGAL::parameters::face_to_face_output_iterator
                         (boost::make_function_output_iterator
                          ([&](const std::pair<TIN_with_info::Face_handle, Mesh::Face_index>& ff)
                           {
                             // Color unassigned faces gray
                             if (ff.first->info() < 0)
                               color_map[ff.second] = CGAL::IO::Color(128, 128, 128);
                             else
                             {
                               // Random color seeded by the component ID
                               CGAL::Random r (ff.first->info());
                               color_map[ff.second] = CGAL::IO::Color (r.get_int(64, 192),
                                                                   r.get_int(64, 192),
                                                                   r.get_int(64, 192));
                             }
                           })));

  std::ofstream tin_colored_ofile ("colored_tin.ply", std::ios_base::binary);
  CGAL::IO::set_binary_mode (tin_colored_ofile);
  CGAL::IO::write_PLY (tin_colored_ofile, tin_colored_mesh);
  tin_colored_ofile.close();

  //! [Save TIN with info]
  ///////////////////////////////////////////////////////////////////

  ///////////////////////////////////////////////////////////////////
  //! [Filtering]

  int min_size = int(points.size() / 2);

  std::vector<TIN_with_info::Vertex_handle> to_remove;
  for (TIN_with_info::Vertex_handle vh : tin_with_info.finite_vertex_handles())
  {
    TIN_with_info::Face_circulator circ = tin_with_info.incident_faces (vh),
      start = circ;

    // Remove a vertex if it's only adjacent to components smaller than threshold
    bool keep = false;
    do
    {
      if (circ->info() >= 0 && component_size[std::size_t(circ->info())] > min_size)
      {
        keep = true;
        break;
      }
    }
    while (++ circ != start);

    if (!keep)
      to_remove.push_back (vh);
  }

  std::cerr << to_remove.size() << " vertices(s) will be removed after filtering" << std::endl;
  for (TIN_with_info::Vertex_handle vh : to_remove)
    tin_with_info.remove (vh);

  //! [Filtering]
  ///////////////////////////////////////////////////////////////////

  ///////////////////////////////////////////////////////////////////
  //! [Hole filling]

  // Copy and keep track of overly large faces
  Mesh dtm_mesh;

  std::vector<Mesh::Face_index> face_selection;
  Mesh::Property_map<Mesh::Face_index, bool> face_selection_map
   = dtm_mesh.add_property_map<Mesh::Face_index, bool>("is_selected", false).first;

  double limit = CGAL::square (5 * spacing);
  CGAL::copy_face_graph (tin_with_info, dtm_mesh,
                         CGAL::parameters::face_to_face_output_iterator
                         (boost::make_function_output_iterator
                          ([&](const std::pair<TIN_with_info::Face_handle, Mesh::Face_index>& ff)
                           {
                             double longest_edge = 0.;
                             bool border = false;
                             for (int i = 0; i < 3; ++ i)
                             {
                               longest_edge = (std::max)(longest_edge, CGAL::squared_distance
                                                         (ff.first->vertex((i+1)%3)->point(),
                                                          ff.first->vertex((i+2)%3)->point()));

                               TIN_with_info::Face_circulator circ
                                 = tin_with_info.incident_faces (ff.first->vertex(i)),
                                 start = circ;
                               do
                               {
                                 if (tin_with_info.is_infinite (circ))
                                 {
                                   border = true;
                                   break;
                                 }
                               }
                               while (++ circ != start);

                               if (border)
                                 break;
                             }

                             // Select if face is too big AND it's not
                             // on the border (to have closed holes)
                             if (!border && longest_edge > limit)
                             {
                               face_selection_map[ff.second] = true;
                               face_selection.push_back (ff.second);
                             }
                           })));

  // Save original DTM
  std::ofstream dtm_ofile ("dtm.ply", std::ios_base::binary);
  CGAL::IO::set_binary_mode (dtm_ofile);
  CGAL::IO::write_PLY (dtm_ofile, dtm_mesh);
  dtm_ofile.close();

  std::cerr << face_selection.size() << " face(s) are selected for removal" << std::endl;

  // Expand face selection to keep a well formed 2-manifold mesh after removal
  CGAL::expand_face_selection_for_removal (face_selection, dtm_mesh, face_selection_map);
  face_selection.clear();
  for (Mesh::Face_index fi : faces(dtm_mesh))
    if (face_selection_map[fi])
      face_selection.push_back(fi);

  std::cerr << face_selection.size() << " face(s) are selected for removal after expansion" << std::endl;

  for (Mesh::Face_index fi : face_selection)
    CGAL::Euler::remove_face (halfedge(fi, dtm_mesh), dtm_mesh);
  dtm_mesh.collect_garbage();

  if (!dtm_mesh.is_valid())
    std::cerr << "Invalid mesh!" << std::endl;

  // Save filtered DTM
  std::ofstream dtm_holes_ofile ("dtm_with_holes.ply", std::ios_base::binary);
  CGAL::IO::set_binary_mode (dtm_holes_ofile);
  CGAL::IO::write_PLY (dtm_holes_ofile, dtm_mesh);
  dtm_holes_ofile.close();

  // Get all holes
  std::vector<Mesh::Halfedge_index> holes;
  CGAL::Polygon_mesh_processing::extract_boundary_cycles (dtm_mesh, std::back_inserter (holes));

  std::cerr << holes.size() << " hole(s) identified" << std::endl;

  // Identify outer hull (hole with maximum size)
  double max_size = 0.;
  Mesh::Halfedge_index outer_hull;
  for (Mesh::Halfedge_index hi : holes)
  {
    CGAL::Bbox_3 hole_bbox;
    for (Mesh::Halfedge_index haf : CGAL::halfedges_around_face(hi, dtm_mesh))
    {
      const Point_3& p = dtm_mesh.point(target(haf, dtm_mesh));
      hole_bbox += p.bbox();
    }
    double size = CGAL::squared_distance (Point_2(hole_bbox.xmin(), hole_bbox.ymin()),
                                          Point_2(hole_bbox.xmax(), hole_bbox.ymax()));
    if (size > max_size)
    {
      max_size = size;
      outer_hull = hi;
    }
  }

  // Fill all holes except the biggest (which is the outer hull of the mesh)
  for (Mesh::Halfedge_index hi : holes)
    if (hi != outer_hull)
      CGAL::Polygon_mesh_processing::triangulate_refine_and_fair_hole
         (dtm_mesh, hi, CGAL::parameters::fairing_continuity(0));

  // Save DTM with holes filled
  std::ofstream dtm_filled_ofile ("dtm_filled.ply", std::ios_base::binary);
  CGAL::IO::set_binary_mode (dtm_filled_ofile);
  CGAL::IO::write_PLY (dtm_filled_ofile, dtm_mesh);
  dtm_filled_ofile.close();

  //! [Hole filling]
  ///////////////////////////////////////////////////////////////////

  ///////////////////////////////////////////////////////////////////
  //! [Remeshing]

  CGAL::Polygon_mesh_processing::isotropic_remeshing (faces(dtm_mesh), spacing, dtm_mesh);

  std::ofstream dtm_remeshed_ofile ("dtm_remeshed.ply", std::ios_base::binary);
  CGAL::IO::set_binary_mode (dtm_remeshed_ofile);
  CGAL::IO::write_PLY (dtm_remeshed_ofile, dtm_mesh);
  dtm_remeshed_ofile.close();

  //! [Remeshing]
  ///////////////////////////////////////////////////////////////////

  TIN dtm_clean (dtm_mesh.points().begin(), dtm_mesh.points().end());

  ///////////////////////////////////////////////////////////////////
  //! [Rastering]

  CGAL::Bbox_3 bbox = CGAL::bbox_3 (points.points().begin(), points.points().end());

  // Generate raster image 1920-pixels large
  std::size_t width = 1920;
  std::size_t height = std::size_t((bbox.ymax() - bbox.ymin()) * 1920 / (bbox.xmax() - bbox.xmin()));

  std::cerr << "Rastering with resolution " << width << "x" << height << std::endl;

  // Use PPM format (Portable PixMap) for simplicity
  std::ofstream raster_ofile ("raster.ppm", std::ios_base::binary);

  // PPM header
  raster_ofile << "P6" << std::endl // magic number
               << width << " " << height << std::endl // dimensions of the image
               << 255 << std::endl; // maximum color value

  // Use rainbow color ramp output
  Color_ramp color_ramp;

  // Keeping track of location from one point to its neighbor allows
  // for fast locate in DT
  TIN::Face_handle location;

  // Query each pixel of the image
  for (std::size_t y = 0; y < height; ++ y)
    for (std::size_t x = 0; x < width; ++ x)
    {
      Point_3 query (bbox.xmin() + x * (bbox.xmax() - bbox.xmin()) / double(width),
                     bbox.ymin() + (height-y) * (bbox.ymax() - bbox.ymin()) / double(height),
                     0); // not relevant for location in 2D

      location = dtm_clean.locate (query, location);

      // Points outside the convex hull will be colored black
      std::array<unsigned char, 3> colors { 0, 0, 0 };
      if (!dtm_clean.is_infinite(location))
      {
        std::array<double, 3> barycentric_coordinates
          = CGAL::Polygon_mesh_processing::barycentric_coordinates
          (Point_2 (location->vertex(0)->point().x(), location->vertex(0)->point().y()),
           Point_2 (location->vertex(1)->point().x(), location->vertex(1)->point().y()),
           Point_2 (location->vertex(2)->point().x(), location->vertex(2)->point().y()),
           Point_2 (query.x(), query.y()),
           Kernel());

        double height_at_query
          = (barycentric_coordinates[0] * location->vertex(0)->point().z()
             + barycentric_coordinates[1] * location->vertex(1)->point().z()
             + barycentric_coordinates[2] * location->vertex(2)->point().z());

        // Color ramp generates a color depending on a value from 0 to 1
        double height_ratio = (height_at_query - bbox.zmin()) / (bbox.zmax() - bbox.zmin());
        colors = color_ramp.get(height_ratio);
      }
      raster_ofile.write (reinterpret_cast<char*>(&colors), 3);
    }

  raster_ofile.close();

  //! [Rastering]
  ///////////////////////////////////////////////////////////////////

  // Smooth heights with 5 successive Gaussian filters
  double gaussian_variance = 4 * spacing * spacing;
  for (TIN::Vertex_handle vh : dtm_clean.finite_vertex_handles())
  {
    double z = vh->point().z();
    double total_weight = 1;

    TIN::Vertex_circulator circ = dtm_clean.incident_vertices (vh),
      start = circ;

    do
    {
      if (!dtm_clean.is_infinite(circ))
      {
        double sq_dist = CGAL::squared_distance (vh->point(), circ->point());

        double weight = std::exp(- sq_dist / gaussian_variance);
        z += weight * circ->point().z();
        total_weight += weight;
      }
    }
    while (++ circ != start);

    z /= total_weight;

    vh->point() = Point_3 (vh->point().x(), vh->point().y(), z);
  }

  ///////////////////////////////////////////////////////////////////
  //! [Contouring extraction]

  std::array<double, 50> isovalues; // Contour 50 isovalues
  for (std::size_t i = 0; i < isovalues.size(); ++ i)
    isovalues[i] = bbox.zmin() + ((i+1) * (bbox.zmax() - bbox.zmin()) / (isovalues.size() - 2));

  // First find on each face if they are crossed by some isovalues and
  // extract segments in a graph
  using Segment_graph = boost::adjacency_list<boost::listS, boost::vecS, boost::undirectedS, Point_3>;
  Segment_graph graph;
  using Map_p2v = std::map<Point_3, Segment_graph::vertex_descriptor>;
  Map_p2v map_p2v;
  for (TIN::Face_handle vh : dtm_clean.finite_face_handles())
    for (double iv : isovalues)
      if (face_has_isovalue (vh, iv))
      {
        Segment_3 segment = isocontour_in_face (vh, iv);
        for (const Point_3& p : { segment.source(), segment.target() })
        {
          // Only insert end points of segments once to get a well connected graph
          Map_p2v::iterator iter;
          bool inserted;
          std::tie (iter, inserted) = map_p2v.insert (std::make_pair (p, Segment_graph::vertex_descriptor()));
          if (inserted)
          {
            iter->second = boost::add_vertex (graph);
            graph[iter->second] = p;
          }
        }
        boost::add_edge (map_p2v[segment.source()], map_p2v[segment.target()], graph);
      }

  //! [Contouring extraction]
  ///////////////////////////////////////////////////////////////////

  ///////////////////////////////////////////////////////////////////
  //! [Contouring split]

  // Split segments into polylines
  std::vector<std::vector<Point_3> > polylines;
  Polylines_visitor<Segment_graph> visitor (graph, polylines);
  CGAL::split_graph_into_polylines (graph, visitor);

  std::cerr << polylines.size() << " polylines computed, with "
            << map_p2v.size() << " vertices in total" << std::endl;

  // Output to WKT file
  std::ofstream contour_ofile ("contour.wkt");
  contour_ofile.precision(18);
  CGAL::IO::write_multi_linestring_WKT (contour_ofile, polylines);
  contour_ofile.close();

  //! [Contouring split]
  ///////////////////////////////////////////////////////////////////

  ///////////////////////////////////////////////////////////////////
  //! [Contouring simplify]

  // Construct constrained Delaunay triangulation with polylines as constraints
  CTP ctp;
  for (const std::vector<Point_3>& poly : polylines)
    ctp.insert_constraint (poly.begin(), poly.end());

  // Simplification algorithm with limit on distance
  PS::simplify (ctp, PS::Squared_distance_cost(), PS::Stop_above_cost_threshold (16 * spacing * spacing));

  polylines.clear();
  for (CTP::Constraint_id cid : ctp.constraints())
  {
    polylines.push_back (std::vector<Point_3>());
    polylines.back().reserve (ctp.vertices_in_constraint (cid).size());
    for (CTP::Vertex_handle vh : ctp.vertices_in_constraint(cid))
      polylines.back().push_back (vh->point());
  }

  std::size_t nb_vertices
    = std::accumulate (polylines.begin(), polylines.end(), std::size_t(0),
                       [](std::size_t size, const std::vector<Point_3>& poly) -> std::size_t
                       { return size + poly.size(); });

  std::cerr << nb_vertices
            << " vertices remaining after simplification ("
            << 100. * (nb_vertices / double(map_p2v.size())) << "%)" << std::endl;

  // Output to WKT file
  std::ofstream simplified_ofile ("simplified.wkt");
  simplified_ofile.precision(18);
  CGAL::IO::write_multi_linestring_WKT (simplified_ofile, polylines);
  simplified_ofile.close();

  //! [Contouring simplify]
  ///////////////////////////////////////////////////////////////////

  ///////////////////////////////////////////////////////////////////
  //! [Classification]

  // Get training from input
  std::optional<Point_set::Property_map<int>> training_map = points.property_map<int>("training");

  if (training_map.has_value())
  {
    std::cerr << "Classifying ground/vegetation/building" << std::endl;

    // Create labels
    Classification::Label_set labels ({ "ground", "vegetation", "building" });

    // Generate features
    Classification::Feature_set features;
    Classification::Point_set_feature_generator<Kernel, Point_set, Point_set::Point_map>
      generator (points, points.point_map(), 5); // 5 scales

#ifdef CGAL_LINKED_WITH_TBB
    // If TBB is used, features can be computed in parallel
    features.begin_parallel_additions();
    generator.generate_point_based_features (features);
    features.end_parallel_additions();
#else
    generator.generate_point_based_features (features);
#endif

    // Train a random forest classifier
    Classification::ETHZ::Random_forest_classifier classifier (labels, features);
    classifier.train (points.range(training_map.value()));

    // Classify with graphcut regularization
    Point_set::Property_map<int> label_map = points.add_property_map<int>("labels").first;
    Classification::classify_with_graphcut<Concurrency_tag>
      (points, points.point_map(), labels, classifier,
       generator.neighborhood().k_neighbor_query(12), // regularize on 12-neighbors graph
       0.5f, // graphcut weight
       12, // Subdivide to speed-up process
       label_map);

    // Evaluate
    std::cerr << "Mean IoU on training data = "
              << Classification::Evaluation(labels,
                                            points.range(training_map.value()),
                                            points.range(label_map)).mean_intersection_over_union() << std::endl;

    // Save the classified point set
    std::ofstream classified_ofile ("classification_gis_tutorial.ply");
    CGAL::IO::set_binary_mode (classified_ofile);
    classified_ofile << points;
    classified_ofile.close();
  }

  //! [Classification]
  ///////////////////////////////////////////////////////////////////


  return EXIT_SUCCESS;
}