File: interpolation_2.cpp

package info (click to toggle)
cgal 6.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 141,840 kB
  • sloc: cpp: 797,081; ansic: 203,398; sh: 490; python: 411; makefile: 286; javascript: 174
file content (212 lines) | stat: -rw-r--r-- 8,006 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
// Compares the result of several interpolation methods

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Random.h>
#include <CGAL/squared_distance_2.h>

#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/Interpolation_traits_2.h>
#include <CGAL/natural_neighbor_coordinates_2.h>
#include <CGAL/interpolation_functions.h>

#include <CGAL/point_generators_2.h>
#include <CGAL/algorithm.h>
#include <CGAL/Origin.h>

#include <cassert>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::FT                                         Coord_type;
typedef K::Vector_2                                   Vector;
typedef K::Point_2                                    Point;

typedef CGAL::Delaunay_triangulation_2<K>             Delaunay_triangulation;
typedef CGAL::Interpolation_traits_2<K>               Traits;

typedef std::vector< std::pair<Point, Coord_type> >   Coordinate_vector;
typedef std::map<Point, Coord_type, K::Less_xy_2>     Point_value_map;
typedef std::map<Point,  Vector, K::Less_xy_2 >       Point_vector_map;

////////////////////////////////

int main()
{
  //number of sample points:
  int n = 24;
  //number of interpolation points:
  int m = 20;

  std::vector<Point> points;
  points.reserve(n+m);

  //put four bounding box points:
  points.push_back(Point(-3,-3));
  points.push_back(Point(3,-3));
  points.push_back(Point(-3,3));
  points.push_back(Point(3,3));

  // Create n+m-4 points within a disc of radius 2
  double r_d = 3;
  CGAL::Random rng(1513114263);

  CGAL::Random_points_in_disc_2<Point> g(r_d,rng );
  std::copy_n( g, n+m, std::back_inserter(points));

  Delaunay_triangulation T;

  Point_value_map values;
  Point_vector_map gradients;

  //parameters for quadratic function:
  Coord_type alpha = Coord_type(1.0),
      beta1 = Coord_type(2.0),
      beta2 = Coord_type(1.0),
      gamma1 = Coord_type(0.3),
      gamma2 = Coord_type(0.0),
      gamma3 = Coord_type(0.0),
      gamma4 = Coord_type(0.3);

  for(int j=0; j<n ; j++){
    T.insert(points[j]);

    //determine function value/gradient:
    Coord_type x(points[j].x());
    Coord_type y(points[j].y());

    Coord_type value = alpha + beta1*x + beta2*y + gamma1*(x*x) +
                       gamma4*(y*y) + (gamma2+ gamma3) *(x*y);
    Vector gradient(beta1+ (gamma2+ gamma3)*y + Coord_type(2)*(gamma1*x),
                    beta2+ (gamma2+ gamma3)*x + Coord_type(2)*(gamma4*y));
    values.insert(std::make_pair(points[j], value));
    gradients.insert(std::make_pair(points[j], gradient));
  }

  //variables for statistics:
  std::pair<Coord_type, bool> res;
  Coord_type error, l_total = Coord_type(0),
      q_total(l_total), f_total(l_total), s_total(l_total),
      ssquare_total(l_total), l_max(l_total),
      q_max(l_total), f_max(l_total), s_max(l_total),
      ssquare_max(l_total),
      total_value(l_total), l_value(l_total);
  int failure(0);

  //interpolation + error statistics
  for(int i=n;i<n+m;i++){
    Coord_type x(points[i].x());
    Coord_type y(points[i].y());

    Coord_type exact_value = alpha + beta1*x + beta2*y + gamma1*(x*x) +
                             gamma4*(y*y) + (gamma2+ gamma3) *(x*y);

    total_value += exact_value;

    //Coordinate_vector:
    std::vector< std::pair< Point, Coord_type > > coords;
    Coord_type norm =
        CGAL::natural_neighbor_coordinates_2(T, points[i],
                                             std::back_inserter(coords)).second;

    assert(norm>0);

    //linear interpolant:
    l_value = CGAL::linear_interpolation(coords.begin(), coords.end(),
                                         norm,
                                         CGAL::Data_access<Point_value_map>(values));

    error = CGAL_NTS abs(l_value - exact_value);
    l_total += error;
    if (error > l_max) l_max = error;

    //Farin interpolant:
    res =  CGAL::farin_c1_interpolation(coords.begin(),
                                        coords.end(), norm,points[i],
                                        CGAL::Data_access<Point_value_map>(values),
                                        CGAL::Data_access<Point_vector_map>
                                        (gradients),
                                        Traits());
    if(res.second){
      error = CGAL_NTS abs(res.first - exact_value);
      f_total += error;
      if (error > f_max) f_max = error;
    } else ++failure;

    //quadratic interpolant:
    res =  CGAL::quadratic_interpolation(coords.begin(), coords.end(),
                                         norm,points[i],
                                         CGAL::Data_access<Point_value_map>
                                         (values),
                                         CGAL::Data_access<Point_vector_map>
                                         (gradients),
                                         Traits());
    if(res.second){
      error = CGAL_NTS abs(res.first - exact_value);
      q_total += error;
      if (error > q_max) q_max = error;
    } else ++failure;

    //Sibson interpolant: version without sqrt:
    res =  CGAL::sibson_c1_interpolation_square(coords.begin(),
                                                coords.end(), norm,
                                                points[i],
                                                CGAL::Data_access<Point_value_map>
                                                (values),
                                                CGAL::Data_access<Point_vector_map>
                                                (gradients),
                                                Traits());
    //error statistics
    if(res.second){
      error = CGAL_NTS abs(res.first - exact_value);
      ssquare_total += error;
      if (error > ssquare_max) ssquare_max = error;
    } else ++failure;

    //with sqrt(the traditional):
    res =  CGAL::sibson_c1_interpolation(coords.begin(),
                                         coords.end(), norm,
                                         points[i],
                                         CGAL::Data_access<Point_value_map>
                                         (values),
                                         CGAL::Data_access<Point_vector_map>
                                         (gradients),
                                         Traits());

    //error statistics
    if(res.second){
      error = CGAL_NTS abs(res.first - exact_value);
      s_total += error;
      if (error > s_max) s_max = error;
    } else ++failure;
  }

  /************** end of Interpolation: dump statistics **************/
  std::cout << "Result: -----------------------------------" << std::endl;
  std::cout <<  "Interpolation of '" << alpha <<" + "
             << beta1<<" x + "
             << beta2 << " y + " << gamma1 <<" x^2 + "  << gamma2+ gamma3
             <<" xy + "  << gamma4 << " y^2'" << std::endl;
  std::cout << "Knowing " << m << " sample points. Interpolation on "
            << n <<" random points. "<< std::endl;
  std::cout <<"Average function value "
           << (1.0/n) * CGAL::to_double(total_value)
           << ", nb of failures "<< failure << std::endl;

  std::cout << "linear interpolant mean error  "
            << CGAL::to_double(l_total)/n << "  max "
            << CGAL::to_double(l_max) <<std::endl;
  std::cout << "quadratic interpolant  mean error  "
            << CGAL::to_double(q_total)/n << "  max "
            << CGAL::to_double(q_max) << std::endl;
  std::cout << "Farin interpolant  mean error  "
            << CGAL::to_double(f_total)/n << "  max "
            << CGAL::to_double(f_max)  << std::endl;
  std::cout << "Sibson interpolant(classic) mean error  "
            << CGAL::to_double(s_total)/n << "  max "
            << CGAL::to_double(s_max)  << std::endl;
  std::cout << "Sibson interpolant(square_dist) mean error  "
            << CGAL::to_double(ssquare_total)/n << "  max "
            << CGAL::to_double(ssquare_max)  << std::endl;

  return EXIT_SUCCESS;
}