1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Random.h>
#include <CGAL/squared_distance_2.h>
#include <CGAL/Triangulation_vertex_base_with_info_2.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/Interpolation_traits_2.h>
#include <CGAL/natural_neighbor_coordinates_2.h>
#include <CGAL/interpolation_functions.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/algorithm.h>
#include <CGAL/Origin.h>
#include <CGAL/tuple.h>
#include <cassert>
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::FT Coord_type;
typedef K::Vector_2 Vector;
typedef K::Point_2 Point;
template <typename V, typename G>
struct Value_and_gradient
{
Value_and_gradient() : value(), gradient(CGAL::NULL_VECTOR) {}
V value;
G gradient;
};
typedef CGAL::Triangulation_vertex_base_with_info_2<
Value_and_gradient<Coord_type, Vector>, K> Vb;
typedef CGAL::Triangulation_data_structure_2<Vb> Tds;
typedef CGAL::Delaunay_triangulation_2<K, Tds> Delaunay_triangulation;
typedef Delaunay_triangulation::Vertex_handle Vertex_handle;
typedef CGAL::Interpolation_traits_2<K> Traits;
typedef std::vector<std::pair<Vertex_handle, Coord_type> > Coordinate_vector;
int main()
{
//number of sample points:
int n = 24;
//number of interpolation points:
int m = 20;
std::vector<Point> points;
points.reserve(n+m);
//put four bounding box points:
points.push_back(Point(-3,-3));
points.push_back(Point(3,-3));
points.push_back(Point(-3,3));
points.push_back(Point(3,3));
// Create n+m-4 points within a disc of radius 2
double r_d = 3;
CGAL::Random rng(1513114263);
CGAL::Random_points_in_disc_2<Point> g(r_d, rng);
std::copy_n( g, n+m, std::back_inserter(points));
Delaunay_triangulation T;
auto value_function = [](const Vertex_handle& a) -> std::pair<Coord_type, bool>
{
return std::make_pair(a->info().value, true);
};
auto gradient_function = [](const Vertex_handle& a) -> std::pair<Vector, bool>
{
return std::make_pair(a->info().gradient, a->info().gradient != CGAL::NULL_VECTOR);
};
//parameters for quadratic function:
Coord_type alpha = Coord_type(1.0),
beta1 = Coord_type(2.0),
beta2 = Coord_type(1.0),
gamma1 = Coord_type(0.3),
gamma2 = Coord_type(0.0),
gamma3 = Coord_type(0.0),
gamma4 = Coord_type(0.3);
for(int j=0; j<n ; j++)
{
Vertex_handle vh = T.insert(points[j]);
//determine function value/gradient:
Coord_type x(points[j].x());
Coord_type y(points[j].y());
Coord_type value = alpha + beta1*x + beta2*y + gamma1*(x*x) +
gamma4*(y*y) + (gamma2+ gamma3) *(x*y);
Vector gradient(beta1+ (gamma2 + gamma3)*y + Coord_type(2)*(gamma1*x),
beta2+ (gamma2 + gamma3)*x + Coord_type(2)*(gamma4*y));
vh->info().value = value;
vh->info().gradient = gradient;
}
//variables for statistics:
std::pair<Coord_type, bool> res;
Coord_type error, l_total = Coord_type(0),
q_total(l_total), f_total(l_total), s_total(l_total),
ssquare_total(l_total), l_max(l_total),
q_max(l_total), f_max(l_total), s_max(l_total),
ssquare_max(l_total),
total_value(l_total), l_value(l_total);
int failure(0);
//interpolation + error statistics
for(int i=n; i<n+m; i++)
{
Coord_type x(points[i].x());
Coord_type y(points[i].y());
Coord_type exact_value = alpha + beta1*x + beta2*y + gamma1*(x*x) +
gamma4*(y*y) + (gamma2+ gamma3) *(x*y);
total_value += exact_value;
//Coordinate_vector:
Coordinate_vector coords;
typedef CGAL::Identity<std::pair<Vertex_handle, Coord_type> > Identity;
Coord_type norm = CGAL::natural_neighbor_coordinates_2(T,
points[i],
std::back_inserter(coords),
Identity()).second;
assert(norm > 0);
//linear interpolant:
l_value = CGAL::linear_interpolation(coords.begin(), coords.end(),
norm, value_function);
error = CGAL_NTS abs(l_value - exact_value);
l_total += error;
if (error > l_max) l_max = error;
//Farin interpolant:
res = CGAL::farin_c1_interpolation(coords.begin(),
coords.end(), norm,points[i],
value_function,
gradient_function,
Traits());
if(res.second)
{
error = CGAL_NTS abs(res.first - exact_value);
f_total += error;
if (error > f_max)
f_max = error;
}
else
{
++failure;
}
//quadratic interpolant:
res = CGAL::quadratic_interpolation(coords.begin(), coords.end(),
norm, points[i],
value_function,
gradient_function,
Traits());
if(res.second)
{
error = CGAL_NTS abs(res.first - exact_value);
q_total += error;
if (error > q_max)
q_max = error;
}
else
{
++failure;
}
//Sibson interpolant: version without sqrt:
res = CGAL::sibson_c1_interpolation_square(coords.begin(),
coords.end(), norm,
points[i],
value_function,
gradient_function,
Traits());
//error statistics
if(res.second)
{
error = CGAL_NTS abs(res.first - exact_value);
ssquare_total += error;
if (error > ssquare_max)
ssquare_max = error;
}
else
{
++failure;
}
//with sqrt(the traditional):
res = CGAL::sibson_c1_interpolation(coords.begin(),
coords.end(), norm,
points[i],
value_function,
gradient_function,
Traits());
//error statistics
if(res.second)
{
error = CGAL_NTS abs(res.first - exact_value);
s_total += error;
if (error > s_max)
s_max = error;
}
else
{
++failure;
}
}
/************** end of Interpolation: dump statistics **************/
std::cout << "Result: -----------------------------------" << std::endl;
std::cout << "Interpolation of '" << alpha <<" + "
<< beta1<<" x + "
<< beta2 << " y + " << gamma1 <<" x^2 + " << gamma2+ gamma3
<<" xy + " << gamma4 << " y^2'" << std::endl;
std::cout << "Knowing " << m << " sample points. Interpolation on "
<< n <<" random points. "<< std::endl;
std::cout <<"Average function value "
<< (1.0/n) * CGAL::to_double(total_value)
<< ", nb of failures "<< failure << std::endl;
std::cout << "linear interpolant mean error "
<< CGAL::to_double(l_total)/n << " max "
<< CGAL::to_double(l_max) <<std::endl;
std::cout << "quadratic interpolant mean error "
<< CGAL::to_double(q_total)/n << " max "
<< CGAL::to_double(q_max) << std::endl;
std::cout << "Farin interpolant mean error "
<< CGAL::to_double(f_total)/n << " max "
<< CGAL::to_double(f_max) << std::endl;
std::cout << "Sibson interpolant(classic) mean error "
<< CGAL::to_double(s_total)/n << " max "
<< CGAL::to_double(s_max) << std::endl;
std::cout << "Sibson interpolant(square_dist) mean error "
<< CGAL::to_double(ssquare_total)/n << " max "
<< CGAL::to_double(ssquare_max) << std::endl;
return EXIT_SUCCESS;
}
|