File: Mesh_estimation.cpp

package info (click to toggle)
cgal 6.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 141,840 kB
  • sloc: cpp: 797,081; ansic: 203,398; sh: 490; python: 411; makefile: 286; javascript: 174
file content (302 lines) | stat: -rw-r--r-- 11,148 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Monge_via_jet_fitting.h>

#include <fstream>
#include <cassert>

#include <CGAL/property_map.h>

#include <boost/program_options.hpp>
namespace po = boost::program_options;

using namespace std;

#include "PolyhedralSurf.h"
#include "PolyhedralSurf_operations.h"
#include "PolyhedralSurf_rings.h"

//Kernel of the PolyhedralSurf
typedef double                DFT;
typedef CGAL::Simple_cartesian<DFT>  Data_Kernel;
typedef Data_Kernel::Point_3  DPoint;
typedef Data_Kernel::Vector_3 DVector;

//HDS
typedef PolyhedralSurf::Vertex_handle Vertex_handle;
typedef PolyhedralSurf::Vertex Vertex;
typedef PolyhedralSurf::Halfedge_handle Halfedge_handle;
typedef PolyhedralSurf::Halfedge Halfedge;
typedef PolyhedralSurf::Vertex_iterator Vertex_iterator;
typedef PolyhedralSurf::Facet_handle Facet_handle;
typedef PolyhedralSurf::Facet Facet;

struct Hedge_cmp{
  bool operator()(Halfedge_handle a,  Halfedge_handle b) const{
    return &*a < &*b;
  }
};

struct Facet_cmp{
  bool operator()(Facet_handle a, Facet_handle b) const{
    return &*a < &*b;
  }
};

//Vertex property map, with std::map
typedef std::map<Vertex*, int> Vertex2int_map_type;
typedef boost::associative_property_map< Vertex2int_map_type > Vertex_PM_type;
typedef T_PolyhedralSurf_rings<PolyhedralSurf, Vertex_PM_type > Poly_rings;

//Hedge property map, with enriched Halfedge with its length
// typedef HEdge_PM<PolyhedralSurf> Hedge_PM_type;
// typedef T_PolyhedralSurf_hedge_ops<PolyhedralSurf, Hedge_PM_type> Poly_hedge_ops;
//Hedge property map, with std::map
typedef std::map<Halfedge_handle, double, Hedge_cmp> Hedge2double_map_type;
typedef boost::associative_property_map<Hedge2double_map_type> Hedge_PM_type;
typedef T_PolyhedralSurf_hedge_ops<PolyhedralSurf, Hedge_PM_type> Poly_hedge_ops;

// //Facet property map with enriched Facet with its normal
// typedef Facet_PM<PolyhedralSurf> Facet_PM_type;
// typedef T_PolyhedralSurf_facet_ops<PolyhedralSurf, Facet_PM_type> Poly_facet_ops;
//Facet property map, with std::map
typedef std::map<Facet_handle, Vector_3, Facet_cmp> Facet2normal_map_type;
typedef boost::associative_property_map<Facet2normal_map_type> Facet_PM_type;
typedef T_PolyhedralSurf_facet_ops<PolyhedralSurf, Facet_PM_type> Poly_facet_ops;

typedef double                   LFT;
typedef CGAL::Simple_cartesian<LFT>     Local_Kernel;
typedef CGAL::Monge_via_jet_fitting<Data_Kernel> My_Monge_via_jet_fitting;
typedef My_Monge_via_jet_fitting::Monge_form My_Monge_form;


// default parameter values and global variables
unsigned int d_fitting = 2;
unsigned int d_monge = 2;
unsigned int nb_rings = 0;//seek min # of rings to get the required #pts
unsigned int nb_points_to_use = 0;//
bool verbose = false;
unsigned int min_nb_points = (d_fitting + 1) * (d_fitting + 2) / 2;


//gather points around the vertex v using rings on the
//polyhedralsurf. the collection of points resorts to 3 alternatives:
// 1. the exact number of points to be used
// 2. the exact number of rings to be used
// 3. nothing is specified
void gather_fitting_points(Vertex* v,
                           std::vector<DPoint> &in_points,
                           Vertex_PM_type& vpm)
{
  //container to collect vertices of v on the PolyhedralSurf
  std::vector<Vertex*> gathered;
  //initialize
  in_points.clear();

  //OPTION -p nb_points_to_use, with nb_points_to_use != 0. Collect
  //enough rings and discard some points of the last collected ring to
  //get the exact "nb_points_to_use"
  if ( nb_points_to_use != 0 ) {
    Poly_rings::collect_enough_rings(v, nb_points_to_use, gathered, vpm);
    if ( gathered.size() > nb_points_to_use ) gathered.resize(nb_points_to_use);
  }
  else { // nb_points_to_use=0, this is the default and the option -p is not considered;
    // then option -a nb_rings is checked. If nb_rings=0, collect
    // enough rings to get the min_nb_points required for the fitting
    // else collect the nb_rings required
    if ( nb_rings == 0 )
      Poly_rings::collect_enough_rings(v, min_nb_points, gathered, vpm);
    else Poly_rings::collect_i_rings(v, nb_rings, gathered, vpm);
  }

  //store the gathered points
  std::vector<Vertex*>::iterator
    itb = gathered.begin(), ite = gathered.end();
  CGAL_For_all(itb,ite) in_points.push_back((*itb)->point());
}

///////////////MAIN///////////////////////////////////////////////////////
#if defined(CGAL_USE_BOOST_PROGRAM_OPTIONS) && ! defined(DONT_USE_BOOST_PROGRAM_OPTIONS)
int main(int argc, char *argv[])
#else
int main()
#endif
{
  string if_name_string;
  string if_name; //input file name
  string w_if_name;  //as above, but / replaced by _
  string res4openGL_fname;
  string verbose_fname;
  std::ofstream out_4ogl, out_verbose;

  try {
#if defined(CGAL_USE_BOOST_PROGRAM_OPTIONS) && ! defined(DONT_USE_BOOST_PROGRAM_OPTIONS)
    po::options_description desc("Allowed options");
    desc.add_options()
      ("help,h", "produce help message.")
      ("input-file,f", po::value<string>(&if_name_string)->default_value(CGAL::data_file_path("meshes/ellipe0.003.off")),
       "name of the input off file")
      ("degree-jet,d", po::value<unsigned int>(&d_fitting)->default_value(2),
       "degree of the jet, 1 <= degre-jet <= 4")
      ("degree-monge,m", po::value<unsigned int>(&d_monge)->default_value(2),
       "degree of the Monge rep, 1 <= degree-monge <= degree-jet")
      ("nb-rings,a", po::value<unsigned int>(&nb_rings)->default_value(0),
       "number of rings to collect neighbors. 0 means collect enough rings to make appro possible a>=1 fixes the nb of rings to be collected")
      ("nb-points,p", po::value<unsigned int>(&nb_points_to_use)->default_value(0),
       "number of neighbors to use.  0 means this option is not considered, this is the default p>=1 fixes the nb of points to be used")
      ("verbose,v", po::value<bool>(&verbose)->default_value(false),
       "verbose output on text file")
      ;

    po::variables_map vm;
    po::store(po::parse_command_line(argc, argv, desc), vm);
    po::notify(vm);

    if (vm.count("help")) {
      cout << desc << "\n";
      return 1;
    }
#else
    std::cerr << "Command-line options require Boost.ProgramOptions" << std::endl;
    if_name_string = CGAL::data_file_path("meshes/ellipe0.003.off");
    d_fitting = 2;
    d_monge = 2;
    nb_rings = 0;
    nb_points_to_use = 0;
    verbose = false;
#endif
  }
  catch(exception& e) {
    cerr << "error: " << e.what() << "\n";
    return 1;
  }
  catch(...) {
    cerr << "Exception of unknown type!\n";
  }

  //modify global variables which are fct of options:
  min_nb_points = (d_fitting + 1) * (d_fitting + 2) / 2;
  if (nb_points_to_use < min_nb_points && nb_points_to_use != 0)
    {std::cerr << "the nb of points asked is not enough to perform the fitting" << std::endl; exit(0);}

  //prepare output file names
  //--------------------------
  std::cerr << "if_name_string" << if_name_string  << std::endl;
  if_name = if_name_string;

  w_if_name = if_name;
  for(unsigned int i=0; i<w_if_name.size(); i++)
    if (w_if_name[i] == '/') w_if_name[i]='_';
  cerr << if_name << '\n';
  cerr << w_if_name << '\n';

  res4openGL_fname = w_if_name + ".4ogl.txt";
std::cerr << "res4openGL_fname" << res4openGL_fname  << std::endl;
  out_4ogl.open(res4openGL_fname.c_str(), std::ios::out);
  assert(out_4ogl.good());
  //if verbose only...
  if(verbose){
    verbose_fname  = w_if_name + ".verb.txt";
    out_verbose.open(verbose_fname.c_str(), std::ios::out);
    assert(out_verbose.good());
    CGAL::IO::set_pretty_mode(out_verbose);
  }
  unsigned int nb_vertices_considered = 0;//count vertices for verbose

  //load the model from <mesh.off>
  //------------------------------
  PolyhedralSurf P;
  std::ifstream stream(if_name.c_str());
  stream >> P;
  std::cout << "loadMesh...  "<< "Polysurf with " << P.size_of_vertices()
            << " vertices and " << P.size_of_facets()
            << " facets. " << std::endl;

  if(verbose)
    out_verbose << "Polysurf with " << P.size_of_vertices()
                << " vertices and " << P.size_of_facets()
                << " facets. " << std::endl;
  //exit if not enough points in the model
  if (min_nb_points > P.size_of_vertices())    exit(0);

  //create property maps
  //-----------------------------
  //Vertex, using a std::map
  Vertex2int_map_type vertex2props;
  Vertex_PM_type vpm(vertex2props);

  //Hedge, with enriched hedge
  //HEdgePM_type hepm = get_hepm(boost::edge_weight_t(), P);
  //Hedge, using a std::map
  Hedge2double_map_type hedge2props;
  Hedge_PM_type hepm(hedge2props);

  //Facet PM, with enriched Facet
  //FacetPM_type fpm = get_fpm(boost::vertex_attribute_t(), P);
  //Facet PM, with std::map
  Facet2normal_map_type facet2props;
  Facet_PM_type fpm(facet2props);

  //initialize Polyhedral data : length of edges, normal of facets
  Poly_hedge_ops::compute_edges_length(P, hepm);
  Poly_facet_ops::compute_facets_normals(P, fpm);

  //MAIN LOOP: perform calculation for each vertex
  //----------------------------------------------
  std::vector<DPoint> in_points;  //container for data points
  Vertex_iterator vitb, vite;

  //initialize the tag of all vertices to -1
  vitb = P.vertices_begin(); vite = P.vertices_end();
  CGAL_For_all(vitb,vite) put(vpm, &(*vitb), -1);

  vitb = P.vertices_begin(); vite = P.vertices_end();
  for (; vitb != vite; vitb++) {
    //initialize
    Vertex* v = &(*vitb);
    in_points.clear();
    My_Monge_form monge_form;

    //gather points around the vertex using rings
    gather_fitting_points(v, in_points, vpm);

    //skip if the nb of points is to small
    if ( in_points.size() < min_nb_points )
      {std::cerr << "not enough pts for fitting this vertex" << in_points.size() << std::endl;
        continue;}

    // perform the fitting
    My_Monge_via_jet_fitting monge_fit;
    monge_form = monge_fit(in_points.begin(), in_points.end(),
                           d_fitting, d_monge);
    //switch min-max ppal curv/dir wrt the mesh orientation
    const DVector normal_mesh = Poly_facet_ops::compute_vertex_average_unit_normal(v, fpm);
    monge_form.comply_wrt_given_normal(normal_mesh);

    //OpenGL output. Scaling for ppal dir, may be optimized with a
    //global mean edges length computed only once on all edges of P
    DFT scale_ppal_dir = Poly_hedge_ops::compute_mean_edges_length_around_vertex(v, hepm)/2;

    out_4ogl << v->point()  << " ";
    monge_form.dump_4ogl(out_4ogl, scale_ppal_dir);

    //verbose txt output
    if (verbose) {
      std::vector<DPoint>::iterator itbp = in_points.begin(), itep = in_points.end();
      out_verbose << "in_points list : " << std::endl ;
      for (;itbp!=itep;itbp++) out_verbose << *itbp << std::endl ;

      out_verbose << "--- vertex " <<  ++nb_vertices_considered
                  <<        " : " << v->point() << std::endl
                  << "number of points used : " << in_points.size() << std::endl
        ;// << monge_form;
    }
  } //all vertices processed

  //cleanup filenames
  //------------------
  out_4ogl.close();
  if(verbose) {
    out_verbose.close();
  }
  return 0;
}