1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/Poisson_reconstruction_function.h>
#include <CGAL/Mesh_triangulation_3.h>
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
#include <CGAL/Mesh_criteria_3.h>
#include <CGAL/Labeled_mesh_domain_3.h>
#include <CGAL/make_mesh_3.h>
#include <CGAL/facets_in_complex_3_to_triangle_mesh.h>
#include <CGAL/compute_average_spacing.h>
#include <CGAL/Polygon_mesh_processing/distance.h>
#include <CGAL/property_map.h>
#include <CGAL/Real_timer.h>
#include <CGAL/IO/read_points.h>
#include <CGAL/boost/graph/IO/polygon_mesh_io.h>
#include <boost/iterator/transform_iterator.hpp>
#include <iostream>
#include <fstream>
#include <type_traits>
#include <vector>
// Types
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
typedef std::pair<Point, Vector> Point_with_normal;
typedef CGAL::First_of_pair_property_map<Point_with_normal> Point_map;
typedef CGAL::Second_of_pair_property_map<Point_with_normal> Normal_map;
typedef Kernel::Sphere_3 Sphere;
typedef std::vector<Point_with_normal> PointList;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef CGAL::Poisson_reconstruction_function<Kernel> Poisson_reconstruction_function;
namespace params = CGAL::parameters;
template<typename Concurrency_tag, typename PointSet>
void poisson_reconstruction(const PointSet& points, const char* output)
{
typedef CGAL::Labeled_mesh_domain_3<Kernel> Mesh_domain;
typedef typename CGAL::Mesh_triangulation_3<Mesh_domain, CGAL::Default, Concurrency_tag>::type Tr;
typedef CGAL::Mesh_complex_3_in_triangulation_3<Tr> C3t3;
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;
// Poisson options
FT sm_angle = 20.0; // Min triangle angle in degrees.
FT sm_radius = 1.; // Max triangle size w.r.t. point set average spacing.
FT sm_distance = 0.25; // Surface Approximation error w.r.t. point set average spacing.
CGAL::Real_timer time;
time.start();
CGAL::Real_timer total_time;
total_time.start();
// Creates implicit function from the read points using the default solver.
// Note: this method requires an iterator over points
// + property maps to access each point's position and normal.
Poisson_reconstruction_function function(points.begin(), points.end(),
Point_map(), Normal_map());
// Computes the Poisson indicator function f()
// at each vertex of the triangulation.
if(!function.compute_implicit_function())
{
std::cerr << "compute_implicit_function() failed." << std::endl;
return;
}
time.stop();
std::cout << "compute_implicit_function() : " << time.time() << " seconds." << std::endl;
time.reset();
time.start();
// Computes average spacing
FT average_spacing = CGAL::compute_average_spacing<Concurrency_tag>
(points, 6 /* knn = 1 ring */, params::point_map(Point_map()));
time.stop();
std::cout << "Average spacing : " << time.time() << " seconds." << std::endl;
time.reset();
time.start();
// Gets one point inside the implicit surface
// and computes implicit function bounding sphere radius.
const Sphere bsphere = function.bounding_sphere();
FT radius = std::sqrt(bsphere.squared_radius());
// Defines the implicit surface: requires defining a
// conservative bounding sphere centered at inner point.
FT sm_sphere_radius = 5.0 * radius;
FT sm_dichotomy_error = sm_distance * average_spacing / 1000.0; // Dichotomy error must be << sm_distance
std::cout << "dichotomy error = " << sm_dichotomy_error << std::endl;
std::cout << "sm_dichotomy_error / sm_sphere_radius = " << sm_dichotomy_error / sm_sphere_radius << std::endl;
time.stop();
std::cout << "Surface created in " << time.time() << " seconds." << std::endl;
time.reset();
time.start();
// Defines surface mesh generation criteria
Mesh_criteria criteria(params::facet_angle = sm_angle,
params::facet_size = sm_radius * average_spacing,
params::facet_distance = sm_distance * average_spacing);
Mesh_domain domain = Mesh_domain::create_implicit_mesh_domain(function, bsphere,
params::relative_error_bound(sm_dichotomy_error / sm_sphere_radius));
// Generates surface mesh with manifold option
std::cout << "Start meshing...";
std::cout.flush();
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria,
params::no_exude()
.no_perturb()
.manifold_with_boundary());
time.stop();
std::cout << "\nTet mesh created in " << time.time() << " seconds." << std::endl;
time.reset();
time.start();
const auto& tr = c3t3.triangulation();
if(tr.number_of_vertices() == 0)
{
std::cerr << "Triangulation empty!" << std::endl;
return;
}
// saves reconstructed surface mesh
Polyhedron output_mesh;
CGAL::facets_in_complex_3_to_triangle_mesh(c3t3, output_mesh);
time.stop();
std::cout << "Surface extracted in " << time.time() << " seconds." << std::endl;
time.reset();
time.start();
total_time.stop();
std::cout << "Total time : " << total_time.time() << " seconds." << std::endl;
CGAL::IO::write_polygon_mesh(output, output_mesh, params::stream_precision(17));
std::cout << "File written " << output << std::endl;
}
int main(int argc, char* argv[])
{
const std::string file = (argc > 1) ? std::string(argv[1])
: CGAL::data_file_path("points_3/kitten.xyz");
// Reads the point set file in points[].
// Note: read_points() requires an iterator over points
// + property maps to access each point's position and normal.
PointList points;
if(!CGAL::IO::read_points(file, std::back_inserter(points),
params::point_map(Point_map())
.normal_map(Normal_map())))
{
std::cerr << "Error: cannot read file input file!" << std::endl;
return EXIT_FAILURE;
}
std::cout << "File " << file << " has been read, " << points.size() << " points." << std::endl;
std::cout << "\n\n### Sequential mode ###" << std::endl;
poisson_reconstruction<CGAL::Sequential_tag>(points, "out_sequential.off");
#ifdef CGAL_LINKED_WITH_TBB
std::cout << "\n\n### Parallel mode ###" << std::endl;
poisson_reconstruction<CGAL::Parallel_tag>(points, "out_parallel.off");
#endif
return EXIT_SUCCESS;
}
|