File: poisson_reconstruction.cpp

package info (click to toggle)
cgal 6.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 141,840 kB
  • sloc: cpp: 797,081; ansic: 203,398; sh: 490; python: 411; makefile: 286; javascript: 174
file content (388 lines) | stat: -rw-r--r-- 14,405 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
// poisson_reconstruction.cpp

//----------------------------------------------------------
// Poisson Delaunay Reconstruction method.
// Reads a point set or a mesh's set of vertices, reconstructs a surface using Poisson,
// and saves the surface.
// Output format is .off.
//----------------------------------------------------------
// poisson_reconstruction file_in file_out [options]

// CGAL
#include <CGAL/AABB_tree.h> // must be included before kernel
#include <CGAL/AABB_traits_3.h>
#include <CGAL/AABB_face_graph_triangle_primitive.h>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polyhedron_3.h>

#include <CGAL/Mesh_triangulation_3.h>
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
#include <CGAL/Mesh_criteria_3.h>
#include <CGAL/Labeled_mesh_domain_3.h>
#include <CGAL/make_mesh_3.h>
#include <CGAL/facets_in_complex_3_to_triangle_mesh.h>

#include <CGAL/Poisson_reconstruction_function.h>
#include <CGAL/IO/read_points.h>
#include <CGAL/compute_average_spacing.h>
#include <CGAL/Polygon_mesh_processing/compute_normal.h>

#include <CGAL/Timer.h>

#include <deque>
#include <cstdlib>
#include <fstream>
#include <math.h>

// ----------------------------------------------------------------------------
// Types
// ----------------------------------------------------------------------------

// kernel
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;

// Simple geometric types
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
typedef std::pair<Point, Vector> Point_with_normal;
typedef Kernel::Sphere_3 Sphere;
typedef std::deque<Point_with_normal> PointList;

// polyhedron
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;

// Poisson implicit function
typedef CGAL::Poisson_reconstruction_function<Kernel> Poisson_reconstruction_function;

// Mesh_3
typedef CGAL::Labeled_mesh_domain_3<Kernel> Mesh_domain;
typedef typename CGAL::Mesh_triangulation_3<Mesh_domain>::type Tr;
typedef CGAL::Mesh_complex_3_in_triangulation_3<Tr> C3t3;
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;

// AABB tree
typedef CGAL::AABB_face_graph_triangle_primitive<Polyhedron> Primitive;
typedef CGAL::AABB_traits_3<Kernel, Primitive> AABB_traits;
typedef CGAL::AABB_tree<AABB_traits> AABB_tree;

struct Counter {
  std::size_t i, N;
  Counter(std::size_t N)
    : i(0), N(N)
  {}

  void operator()()
  {
    i++;
    if(i == N){
      std::cerr << "Counter reached " << N << std::endl;
    }
  }

};

struct InsertVisitor {

  Counter& c;
  InsertVisitor(Counter& c)
    : c(c)
  {}

  void before_insertion()
  {
    c();
  }

};


// ----------------------------------------------------------------------------
// main()
// ----------------------------------------------------------------------------

int main(int argc, char * argv[])
{
    std::cerr << "Poisson Delaunay Reconstruction method" << std::endl;

    //***************************************
    // decode parameters
    //***************************************

    // usage
    if(argc == 1)
    {
      std::cerr << "Reads a point set or a mesh's set of vertices, reconstructs a surface using Poisson,\n";
      std::cerr << "and saves the surface.\n";
      std::cerr << "\n";
      std::cerr << "Usage: " << argv[0] << " [file_in] [file_out] [options]\n";
      std::cerr << "Input file formats are .off (mesh) and .xyz or .pwn (point set).\n";
      std::cerr << "Output file format is .off.\n";
      std::cerr << "Options:\n";
      std::cerr << "  -sm_radius <float>     Radius upper bound (default=100 * average spacing)\n";
      std::cerr << "  -sm_distance <float>   Distance upper bound (default=0.25 * average spacing)\n";
      std::cerr << "Running " << argv[0] << "data/kitten.xyz kitten_poisson-20-100-0.5.off -sm_distance 0.5\n";
    }

    // Poisson options
    FT sm_angle = 20.0; // Min triangle angle (degrees).
    FT sm_radius = 100; // Max triangle size w.r.t. point set average spacing.
    FT sm_distance = 0.25; // Approximation error w.r.t. point set average spacing.
    std::string solver_name = "eigen"; // Sparse linear solver name.
    double approximation_ratio = 0.02;
    double average_spacing_ratio = 5;

    // decode parameters
    std::string input_filename  = (argc > 1) ? argv[1] : CGAL::data_file_path("points_3/kitten.xyz");
    std::string output_filename = (argc > 2) ? argv[2] : "kitten_poisson-20-100-0.5.off";
    for (int i=3; i+1<argc ; ++i)
    {
      if (std::string(argv[i])=="-sm_radius")
        sm_radius = atof(argv[++i]);
      else if (std::string(argv[i])=="-sm_distance")
        sm_distance = atof(argv[++i]);
      else if (std::string(argv[i])=="-solver")
        solver_name = argv[++i];
      else if (std::string(argv[i])=="-approx")
        approximation_ratio = atof(argv[++i]);
      else if (std::string(argv[i])=="-ratio")
        average_spacing_ratio = atof(argv[++i]);
      else {
        std::cerr << "Error: invalid option " << argv[i] << "\n";
        return EXIT_FAILURE;
      }
    }

    if (argc == 1) sm_distance = 0.5;

    CGAL::Timer task_timer; task_timer.start();

    //***************************************
    // Loads mesh/point set
    //***************************************

    PointList points;

    // If OFF file format
    std::cerr << "Open " << input_filename << " for reading..." << std::endl;
    std::string extension = input_filename.substr(input_filename.find_last_of('.'));
    if (extension == ".off" || extension == ".OFF")
    {
      // Reads the mesh file in a polyhedron
      std::ifstream stream(input_filename.c_str());
      Polyhedron input_mesh;
      CGAL::scan_OFF(stream, input_mesh, true /* verbose */);
      if(!stream || !input_mesh.is_valid() || input_mesh.empty())
      {
        std::cerr << "Error: cannot read file " << input_filename << std::endl;
        return EXIT_FAILURE;
      }

      // Converts Polyhedron vertices to point set.
      // Computes vertices normal from connectivity.
      for(boost::graph_traits<Polyhedron>::vertex_descriptor v :
                    vertices(input_mesh)){
        const Point& p = v->point();
        Vector n = CGAL::Polygon_mesh_processing::compute_vertex_normal(v,input_mesh);
        points.push_back(std::make_pair(p,n));
      }
    }
    // If XYZ file format
    else if (extension == ".xyz" || extension == ".XYZ" ||
             extension == ".pwn" || extension == ".PWN")
    {
      // Reads the point set file in points[].
      // Note: read_points() requires an iterator over points
      // + property maps to access each point's position and normal.
      if (!CGAL::IO::read_points(input_filename.c_str(), std::back_inserter(points),
                                  CGAL::parameters::point_map(CGAL::make_first_of_pair_property_map(Point_with_normal()))
                                                    .normal_map(CGAL::make_second_of_pair_property_map(Point_with_normal()))))
      {
        std::cerr << "Error: cannot read input file!" << input_filename << std::endl;
        return EXIT_FAILURE;
      }
    }
    else
    {
      std::cerr << "Error: cannot read file " << input_filename << std::endl;
      return EXIT_FAILURE;
    }

    // Prints status
    std::size_t nb_points = points.size();
    std::cerr << "Reads file " << input_filename << ": " << nb_points << " points, "
                                                        << task_timer.time() << " seconds"
                                                        << std::endl;
    task_timer.reset();

    //***************************************
    // Checks requirements
    //***************************************

    if (nb_points == 0)
    {
      std::cerr << "Error: empty point set" << std::endl;
      return EXIT_FAILURE;
    }

    bool points_have_normals = (points.begin()->second != CGAL::NULL_VECTOR);
    if ( ! points_have_normals )
    {
      std::cerr << "Input point set not supported: this reconstruction method requires oriented normals" << std::endl;
      return EXIT_FAILURE;
    }

    CGAL::Timer reconstruction_timer; reconstruction_timer.start();


    Counter counter(std::distance(points.begin(), points.end()));
    InsertVisitor visitor(counter) ;


    //***************************************
    // Computes implicit function
    //***************************************

    std::cerr << "Computes Poisson implicit function...\n";

    // Creates implicit function from the read points.
    // Note: this method requires an iterator over points
    // + property maps to access each point's position and normal.
    Poisson_reconstruction_function function(
                              points.begin(), points.end(),
                              CGAL::make_first_of_pair_property_map(Point_with_normal()),
                              CGAL::make_second_of_pair_property_map(Point_with_normal()),
                              visitor);

    #ifdef CGAL_EIGEN3_ENABLED
    {
      if (solver_name == "eigen")
      {
        std::cerr << "Use Eigen 3\n";
        CGAL::Eigen_solver_traits<Eigen::ConjugateGradient<CGAL::Eigen_sparse_symmetric_matrix<double>::EigenType> > solver;
        if ( ! function.compute_implicit_function(solver, visitor,
                                                approximation_ratio,
                                                average_spacing_ratio) )
        {
          std::cerr << "Error: cannot compute implicit function" << std::endl;
          return EXIT_FAILURE;
        }
      }
      else
      {
        std::cerr << "Error: invalid solver " << solver_name << "\n";
        return EXIT_FAILURE;
      }
    }
    #else
    {
      std::cerr << "Error: invalid solver " << solver_name << "\n";
      return EXIT_FAILURE;
    }
    #endif


    // Prints status
    std::cerr << "Total implicit function (triangulation+refinement+solver): " << task_timer.time() << " seconds\n";
    task_timer.reset();

    //***************************************
    // Surface mesh generation
    //***************************************

    std::cerr << "Surface meshing...\n";

    // Computes average spacing
    FT average_spacing = CGAL::compute_average_spacing<CGAL::Sequential_tag>
      (points, 6 /* knn = 1 ring */,
       CGAL::parameters::point_map (CGAL::make_first_of_pair_property_map(Point_with_normal())));

    // Gets one point inside the implicit surface
    Point inner_point = function.get_inner_point();
    FT inner_point_value = function(inner_point);
    if(inner_point_value >= 0.0)
    {
      std::cerr << "Error: unable to seed (" << inner_point_value << " at inner_point)" << std::endl;
      return EXIT_FAILURE;
    }

    // Gets implicit function's radius
    Sphere bsphere = function.bounding_sphere();
    FT radius = std::sqrt(bsphere.squared_radius());

    FT sm_sphere_radius = 5.0 * radius;
    FT sm_dichotomy_error = sm_distance*average_spacing/1000.0; // Dichotomy error must be << sm_distance

    // Defines generation criteria
    Mesh_criteria criteria(CGAL::parameters::facet_angle = sm_angle,
                           CGAL::parameters::facet_size = sm_radius*average_spacing,
                           CGAL::parameters::facet_distance = sm_distance*average_spacing);

    std::cerr         << "  make_mesh_3 with sphere center=("<<inner_point << "),\n"
                      << "                    sphere radius="<<sm_sphere_radius<<",\n"
                      << "                    angle="<<sm_angle << " degrees,\n"
                      << "                    triangle size="<<sm_radius<<" * average spacing="<<sm_radius*average_spacing<<",\n"
                      << "                    distance="<<sm_distance<<" * average spacing="<<sm_distance*average_spacing<<",\n"
                      << "                    dichotomy error=distance/"<<sm_distance*average_spacing/sm_dichotomy_error<<",\n"
                      << "                    manifold_with_boundary()\n";

    // Defines mesh domain
    Mesh_domain domain = Mesh_domain::create_implicit_mesh_domain(function, bsphere,
        CGAL::parameters::relative_error_bound(sm_dichotomy_error / sm_sphere_radius));

    // Generates mesh with manifold option
    C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria,
                                        CGAL::parameters::no_exude().no_perturb()
                                        .manifold_with_boundary());

    // Prints status
    const Tr& tr = c3t3.triangulation();
    std::cerr << "Surface meshing: " << task_timer.time() << " seconds, "
                                     << tr.number_of_vertices() << " output vertices"
                                     << std::endl;
    task_timer.reset();

    if(tr.number_of_vertices() == 0)
      return EXIT_FAILURE;

    // Converts to polyhedron
    Polyhedron output_mesh;
    CGAL::facets_in_complex_3_to_triangle_mesh(c3t3, output_mesh);

    // Prints total reconstruction duration
    std::cerr << "Total reconstruction (implicit function + meshing): " << reconstruction_timer.time() << " seconds\n";

    //***************************************
    // Computes reconstruction error
    //***************************************

    // Constructs AABB tree and computes internal KD-tree
    // data structure to accelerate distance queries
    AABB_tree tree(faces(output_mesh).first, faces(output_mesh).second, output_mesh);

    // Computes distance from each input point to reconstructed mesh
    double max_distance = DBL_MIN;
    double avg_distance = 0;
    for (PointList::const_iterator p=points.begin(); p!=points.end(); p++)
    {
      double distance = std::sqrt(tree.squared_distance(p->first));

      max_distance = (std::max)(max_distance, distance);
      avg_distance += distance;
    }
    avg_distance /= double(points.size());

    std::cerr << "Reconstruction error:\n"
              << "  max = " << max_distance << " = " << max_distance/average_spacing << " * average spacing\n"
              << "  avg = " << avg_distance << " = " << avg_distance/average_spacing << " * average spacing\n";

    //***************************************
    // Saves reconstructed surface mesh
    //***************************************

    std::cerr << "Write file " << output_filename << std::endl << std::endl;
    std::ofstream out(output_filename.c_str());
    out << output_mesh;

    return EXIT_SUCCESS;
}