1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Point_set_3.h>
#include <CGAL/Point_set_3/IO.h>
#include <CGAL/remove_outliers.h>
#include <CGAL/grid_simplify_point_set.h>
#include <CGAL/jet_smooth_point_set.h>
#include <CGAL/jet_estimate_normals.h>
#include <CGAL/mst_orient_normals.h>
#include <CGAL/poisson_surface_reconstruction.h>
#include <CGAL/Advancing_front_surface_reconstruction.h>
#include <CGAL/Scale_space_surface_reconstruction_3.h>
#include <CGAL/Scale_space_reconstruction_3/Jet_smoother.h>
#include <CGAL/Scale_space_reconstruction_3/Advancing_front_mesher.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Polygon_mesh_processing/polygon_soup_to_polygon_mesh.h>
#include <cstdlib>
#include <vector>
#include <fstream>
// types
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point_3;
typedef Kernel::Vector_3 Vector_3;
typedef Kernel::Sphere_3 Sphere_3;
typedef CGAL::Point_set_3<Point_3, Vector_3> Point_set;
int main(int argc, char*argv[])
{
///////////////////////////////////////////////////////////////////
//! [Reading input]
Point_set points;
std::string fname = argc==1?CGAL::data_file_path("points_3/kitten.xyz") : argv[1];
if (argc < 2)
{
std::cerr << "Usage: " << argv[0] << " [input.xyz/off/ply/las]" << std::endl;
std::cerr <<"Running " << argv[0] << " data/kitten.xyz -1\n";
}
std::ifstream stream (fname, std::ios_base::binary);
if (!stream)
{
std::cerr << "Error: cannot read file " << fname << std::endl;
return EXIT_FAILURE;
}
stream >> points;
std::cout << "Read " << points.size () << " point(s)" << std::endl;
if (points.empty())
return EXIT_FAILURE;
//! [Reading input]
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
//! [Outlier removal]
typename Point_set::iterator rout_it = CGAL::remove_outliers<CGAL::Sequential_tag>
(points,
24, // Number of neighbors considered for evaluation
points.parameters().threshold_percent (5.0)); // Percentage of points to remove
points.remove(rout_it, points.end());
std::cout << points.number_of_removed_points()
<< " point(s) are outliers." << std::endl;
// Applying point set processing algorithm to a CGAL::Point_set_3
// object does not erase the points from memory but place them in
// the garbage of the object: memory can be freed by the user.
points.collect_garbage();
//! [Outlier removal]
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
//! [Simplification]
// Compute average spacing using neighborhood of 6 points
double spacing = CGAL::compute_average_spacing<CGAL::Sequential_tag> (points, 6);
// Simplify using a grid of size 2 * average spacing
typename Point_set::iterator gsim_it = CGAL::grid_simplify_point_set (points, 2. * spacing);
points.remove(gsim_it, points.end());
std::cout << points.number_of_removed_points()
<< " point(s) removed after simplification." << std::endl;
points.collect_garbage();
//! [Simplification]
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
//! [Smoothing]
CGAL::jet_smooth_point_set<CGAL::Sequential_tag> (points, 24);
//! [Smoothing]
///////////////////////////////////////////////////////////////////
int reconstruction_choice
= argc==1? -1 : (argc < 3 ? 0 : atoi(argv[2]));
if (reconstruction_choice == 0 || reconstruction_choice==-1) // Poisson
{
///////////////////////////////////////////////////////////////////
//! [Normal estimation]
CGAL::jet_estimate_normals<CGAL::Sequential_tag>
(points, 24); // Use 24 neighbors
// Orientation of normals, returns iterator to first unoriented point
typename Point_set::iterator unoriented_points_begin =
CGAL::mst_orient_normals(points, 24); // Use 24 neighbors
points.remove (unoriented_points_begin, points.end());
//! [Normal estimation]
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
//! [Poisson reconstruction]
CGAL::Surface_mesh<Point_3> output_mesh;
CGAL::poisson_surface_reconstruction_delaunay
(points.begin(), points.end(),
points.point_map(), points.normal_map(),
output_mesh, spacing);
//! [Poisson reconstruction]
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
//! [Output poisson]
std::ofstream f ("out_poisson.ply", std::ios_base::binary);
CGAL::IO::set_binary_mode (f);
CGAL::IO::write_PLY(f, output_mesh);
f.close ();
//! [Output poisson]
///////////////////////////////////////////////////////////////////
}
if (reconstruction_choice == 1 || reconstruction_choice==-1) // Advancing front
{
///////////////////////////////////////////////////////////////////
//! [Advancing front reconstruction]
typedef std::array<std::size_t, 3> Facet; // Triple of indices
std::vector<Facet> facets;
// The function is called using directly the points raw iterators
CGAL::advancing_front_surface_reconstruction(points.points().begin(),
points.points().end(),
std::back_inserter(facets));
std::cout << facets.size ()
<< " facet(s) generated by reconstruction." << std::endl;
//! [Advancing front reconstruction]
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
//! [Output advancing front]
// copy points for random access
std::vector<Point_3> vertices;
vertices.reserve (points.size());
std::copy (points.points().begin(), points.points().end(), std::back_inserter (vertices));
CGAL::Surface_mesh<Point_3> output_mesh;
CGAL::Polygon_mesh_processing::polygon_soup_to_polygon_mesh (vertices, facets, output_mesh);
std::ofstream f ("out_af.off");
f << output_mesh;
f.close ();
//! [Output advancing front]
///////////////////////////////////////////////////////////////////
}
if (reconstruction_choice == 2 || reconstruction_choice==-1) // Scale space
{
///////////////////////////////////////////////////////////////////
//! [Scale space reconstruction]
CGAL::Scale_space_surface_reconstruction_3<Kernel> reconstruct
(points.points().begin(), points.points().end());
// Smooth using 4 iterations of Jet Smoothing
reconstruct.increase_scale (4, CGAL::Scale_space_reconstruction_3::Jet_smoother<Kernel>());
// Mesh with the Advancing Front mesher with a maximum facet length of 0.5
reconstruct.reconstruct_surface (CGAL::Scale_space_reconstruction_3::Advancing_front_mesher<Kernel>(0.5));
//! [Scale space reconstruction]
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
//! [Output scale space]
std::ofstream f ("out_sp.off");
f << "OFF" << std::endl << points.size () << " "
<< reconstruct.number_of_facets() << " 0" << std::endl;
for (Point_set::Index idx : points)
f << points.point (idx) << std::endl;
for (const auto& facet : CGAL::make_range (reconstruct.facets_begin(), reconstruct.facets_end()))
f << "3 "<< facet[0] << " " << facet[1] << " " << facet[2] << std::endl;
f.close ();
//! [Output scale space]
///////////////////////////////////////////////////////////////////
}
else // Handle error
{
std::cerr << "Error: invalid reconstruction id: " << reconstruction_choice << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|