1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
|
#include "include/utils.h"
#include "include/Saver.h"
#include <CGAL/Eigen_diagonalize_traits.h>
#include <CGAL/linear_least_squares_fitting_2.h>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Shape_regularization/regularize_segments.h>
// Typedefs.
using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel;
using FT = typename Kernel::FT;
using Point_2 = typename Kernel::Point_2;
using Segment_2 = typename Kernel::Segment_2;
using Line_2 = typename Kernel::Line_2;
using Points_2 = std::vector<Point_2>;
using Indices = std::vector<std::size_t>;
using Segments = std::vector<Segment_2>;
using Neighbor_query =
CGAL::Shape_regularization::Segments::Delaunay_neighbor_query_2<Kernel, Segments>;
using Angle_regularization =
CGAL::Shape_regularization::Segments::Angle_regularization_2<Kernel, Segments>;
using Offset_regularization =
CGAL::Shape_regularization::Segments::Offset_regularization_2<Kernel, Segments>;
int main(int argc, char *argv[]) {
// If we want to load a different file, we load it from a path.
// Each point comes with the index of the corresponding group.
// The file format: x y z i, where i is the group index. The points
// are 2D hence z = 0. Each group contains points, which form
// an approximate line.
std::string path = "data/real_data_2.xyzi";
if (argc > 1) path = argv[1];
Saver<Kernel> saver;
// Initialize input groups with points.
std::vector<Points_2> groups;
initialize_groups(path, groups);
// Fit a line to each group of points.
Line_2 line; Point_2 centroid;
std::vector<Line_2> lines;
lines.reserve(groups.size());
for (const auto& group : groups) {
CGAL::linear_least_squares_fitting_2(
group.begin(), group.end(), line, centroid, CGAL::Dimension_tag<0>(),
Kernel(), CGAL::Eigen_diagonalize_traits<FT, 2>());
lines.push_back(line);
}
// Cut each line at the ends of the corresponding group.
std::vector<Segment_2> segments;
segments.reserve(lines.size());
Point_2 source, target;
for (std::size_t i = 0; i < lines.size(); ++i) {
boundary_points_on_line_2(
groups[i], lines[i], source, target);
segments.push_back(Segment_2(source, target));
}
// Save input segments.
if (argc > 2) {
const std::string full_path = std::string(argv[2]) + "regularize_real_data_2_before";
saver.export_eps_segments(segments, full_path, FT(3) / FT(2));
}
// Angle regularization.
const FT max_angle_2 = FT(80);
// Create neighbor query and angle-based regularization model.
Neighbor_query neighbor_query(segments);
Angle_regularization angle_regularization(
segments, CGAL::parameters::maximum_angle(max_angle_2));
// Regularize.
CGAL::Shape_regularization::Segments::regularize_segments(
segments, neighbor_query, angle_regularization);
std::cout << "* number of modified segments (angles) = " <<
angle_regularization.number_of_modified_segments() << std::endl;
// Offset regularization.
const FT max_offset_2 = FT(2);
// Get groups of parallel segments after angle regularization.
std::vector<Indices> pgroups;
angle_regularization.parallel_groups(
std::back_inserter(pgroups));
// Create offset-based regularization model.
Offset_regularization offset_regularization(
segments, CGAL::parameters::maximum_offset(max_offset_2));
// Add each group of parallel segments with at least 2 segments.
neighbor_query.clear();
for (const auto& pgroup : pgroups) {
neighbor_query.add_group(pgroup);
offset_regularization.add_group(pgroup);
}
// Regularize.
CGAL::Shape_regularization::Segments::regularize_segments(
segments, neighbor_query, offset_regularization);
std::cout << "* number of modified segments (offsets) = " <<
offset_regularization.number_of_modified_segments() << std::endl;
// Save regularized segments.
if (argc > 2) {
const std::string full_path = std::string(argv[2]) + "regularize_real_data_2_after";
saver.export_eps_segments(segments, full_path, FT(3) / FT(2));
}
}
|