1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Surface_mesh.h>
// Simplification function
#include <CGAL/Surface_mesh_simplification/edge_collapse.h>
// Visitor base
#include <CGAL/Surface_mesh_simplification/Edge_collapse_visitor_base.h>
// Stop-condition policy
#include <CGAL/Surface_mesh_simplification/Policies/Edge_collapse/Edge_count_ratio_stop_predicate.h>
#include <iostream>
#include <fstream>
typedef CGAL::Simple_cartesian<double> Kernel;
typedef Kernel::Point_3 Point_3;
typedef CGAL::Surface_mesh<Point_3> Surface_mesh;
typedef boost::graph_traits<Surface_mesh>::halfedge_descriptor halfedge_descriptor;
typedef boost::graph_traits<Surface_mesh>::vertex_descriptor vertex_descriptor;
namespace SMS = CGAL::Surface_mesh_simplification;
typedef SMS::Edge_profile<Surface_mesh> Profile;
// The following is a Visitor that keeps track of the simplification process.
// In this example the progress is printed real-time and a few statistics are
// recorded (and printed in the end).
//
struct Stats
{
std::size_t collected = 0;
std::size_t processed = 0;
std::size_t collapsed = 0;
std::size_t non_collapsable = 0;
std::size_t cost_uncomputable = 0;
std::size_t placement_uncomputable = 0;
};
struct My_visitor : SMS::Edge_collapse_visitor_base<Surface_mesh>
{
My_visitor(Stats* s) : stats(s) {}
// Called during the collecting phase for each edge collected.
void OnCollected(const Profile&, const std::optional<double>&)
{
++(stats->collected);
std::cerr << "\rEdges collected: " << stats->collected << std::flush;
}
// Called during the processing phase for each edge selected.
// If cost is absent the edge won't be collapsed.
void OnSelected(const Profile&,
std::optional<double> cost,
std::size_t initial,
std::size_t current)
{
++(stats->processed);
if(!cost)
++(stats->cost_uncomputable);
if(current == initial)
std::cerr << "\n" << std::flush;
std::cerr << "\r" << current << std::flush;
}
// Called during the processing phase for each edge being collapsed.
// If placement is absent the edge is left uncollapsed.
void OnCollapsing(const Profile&,
std::optional<Point> placement)
{
if(!placement)
++(stats->placement_uncomputable);
}
// Called for each edge which failed the so called link-condition,
// that is, which cannot be collapsed because doing so would
// turn the surface mesh into a non-manifold.
void OnNonCollapsable(const Profile&)
{
++(stats->non_collapsable);
}
// Called after each edge has been collapsed
void OnCollapsed(const Profile&, vertex_descriptor)
{
++(stats->collapsed);
}
Stats* stats;
};
int main(int argc, char** argv)
{
Surface_mesh surface_mesh;
const std::string filename = (argc > 1) ? argv[1] : CGAL::data_file_path("meshes/small_cube.off");
std::ifstream is(filename);
if(!is || !(is >> surface_mesh))
{
std::cerr << "Failed to read input mesh: " << filename << std::endl;
return EXIT_FAILURE;
}
if(!CGAL::is_triangle_mesh(surface_mesh))
{
std::cerr << "Input geometry is not triangulated." << std::endl;
return EXIT_FAILURE;
}
// In this example, the simplification stops when the number of undirected edges
// drops below xx% of the initial count
const double ratio = (argc > 2) ? std::stod(argv[2]) : 0.1;
SMS::Edge_count_ratio_stop_predicate<Surface_mesh> stop(ratio);
Stats stats;
My_visitor vis(&stats);
// The index maps are not explicitelty passed as in the previous
// example because the surface mesh items have a proper id() field.
// On the other hand, we pass here explicit cost and placement
// function which differ from the default policies, omitted in
// the previous example.
int r = SMS::edge_collapse(surface_mesh, stop, CGAL::parameters::visitor(vis));
std::cout << "\nEdges collected: " << stats.collected
<< "\nEdges processed: " << stats.processed
<< "\nEdges collapsed: " << stats.collapsed
<< std::endl
<< "\nEdges not collapsed due to topological constraints: " << stats.non_collapsable
<< "\nEdge not collapsed due to cost computation constraints: " << stats.cost_uncomputable
<< "\nEdge not collapsed due to placement computation constraints: " << stats.placement_uncomputable
<< std::endl;
std::cout << "\nFinished!\n" << r << " edges removed.\n"
<< surface_mesh.number_of_edges() << " final edges.\n";
CGAL::IO::write_polygon_mesh((argc > 3) ? argv[3] : "out.off", surface_mesh, CGAL::parameters::stream_precision(17));
return EXIT_SUCCESS;
}
|