File: Aff_transformationH2.h

package info (click to toggle)
cgal 6.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 141,840 kB
  • sloc: cpp: 797,081; ansic: 203,398; sh: 490; python: 411; makefile: 286; javascript: 174
file content (1181 lines) | stat: -rw-r--r-- 34,545 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
// Copyright (c) 1999
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.0.1/Homogeneous_kernel/include/CGAL/Homogeneous/Aff_transformationH2.h $
// $Id: include/CGAL/Homogeneous/Aff_transformationH2.h 50cfbde3b84 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s)     : Stefan Schirra

#ifndef CGAL_AFF_TRANSFORMATIONH2_H
#define CGAL_AFF_TRANSFORMATIONH2_H

#include <CGAL/Handle_for_virtual.h>
#include <CGAL/rational_rotation.h>
#include <CGAL/Origin.h>

namespace CGAL {

template <class R>
class Aff_transformationH2;

template <class R>
class Aff_transformation_repH2;

template <class R>
Aff_transformationH2<R>
_general_transformation_composition( Aff_transformation_repH2<R> l,
                                     Aff_transformation_repH2<R> r);

template <class R>
class Aff_transformation_rep_baseH2 : public Ref_counted_virtual
{
  public:
    typedef typename R::RT RT;
    typedef typename R::FT FT;
    typedef typename R::Point_2      Point_2;
    typedef typename R::Vector_2     Vector_2;
    typedef typename R::Direction_2  Direction_2;

    virtual             ~Aff_transformation_rep_baseH2(){}

    virtual  Point_2
                        transform(const Point_2& p) const = 0;
    virtual  Vector_2
                        transform(const Vector_2& v) const = 0;
    virtual  Direction_2
                        transform(const Direction_2& d) const = 0;
    virtual  Aff_transformationH2<R>
                        inverse() const = 0;
    virtual  Aff_transformation_repH2<R>
                        general_form() const = 0;
    virtual  bool       is_even() const = 0;

    virtual  bool       is_translation() const { return false; }
    virtual  bool       is_scaling() const { return false; }
    virtual  bool       is_reflection() const { return false; }
    virtual  bool       is_rotation() const { return false; }

    virtual  RT         homogeneous(int i, int j) const = 0;
    virtual  FT         cartesian(int i, int j) const = 0;
};

template < class R >
class Aff_transformation_repH2 : public Aff_transformation_rep_baseH2<R>
{
  public:
    typedef typename R::RT RT;
    typedef typename R::FT FT;
    typedef typename R::Point_2      Point_2;
    typedef typename R::Vector_2     Vector_2;
    typedef typename R::Direction_2  Direction_2;

    Aff_transformation_repH2()
    {}

    Aff_transformation_repH2(const RT& m00, const RT& m01, const RT& m02,
                             const RT& m10, const RT& m11, const RT& m12,
                             const RT& m22)
              : a(m00), b(m01), c(m02), d(m10), e(m11), f(m12), g(m22)
             {}

    virtual  ~Aff_transformation_repH2()
             {}


    virtual  Point_2
             transform(const Point_2& p) const
             {
               return Point_2( a * p.hx() + b * p.hy() + c * p.hw(),
                               d * p.hx() + e * p.hy() + f * p.hw(),
                               g * p.hw() );
             }

    virtual  Vector_2
             transform(const Vector_2& v) const
             {
               return Vector_2( a * v.hx() + b * v.hy(),
                                d * v.hx() + e * v.hy(),
                                g * v.hw() );
             }

    virtual  Direction_2
             transform(const Direction_2& dir) const
             {
               if ( g > RT(0) )
                   return Direction_2( a * dir.x() + b * dir.y(),
                                       d * dir.x() + e * dir.y() );
               else
                   return - Direction_2(a * dir.x() + b * dir.y(),
                                        d * dir.x() + e * dir.y() );
             }

    virtual  Aff_transformationH2<R>
             inverse() const
             {
                RT  ai =   e*g;
                RT  bi = - b*g;
                RT  ci =   b*f - e*c;
                RT  di = - d*g;
                RT  ei =   a*g;
                RT  fi =   d*c - a*f;
                RT  gi =   a*e - b*d;
                return Aff_transformationH2<R>( ai, bi, ci,
                                                    di, ei, fi,
                                                            gi) ;
             }


    virtual   Aff_transformation_repH2<R>
              general_form() const
              { return *this; }

    virtual   bool
              is_even() const
              { return CGAL_NTS sign<RT>( (a*e - b*d)*g ) == POSITIVE; }

    virtual   RT   homogeneous(int i, int j) const;
    virtual   FT   cartesian(int i, int j) const;

    RT    a;           //    |  a  b  c  |   | x |   | xn |
    RT    b;           //    |  d  e  f  | * | y | = | yn |
    RT    c;           //    |  0  0  g  |   | w |   | wn |
    RT    d;
    RT    e;
    RT    f;
    RT    g;

  friend Aff_transformationH2<R>
         _general_transformation_composition <> (
                                   Aff_transformation_repH2<R> l,
                                   Aff_transformation_repH2<R> r);
};

template < class R >
class Identity_repH2 : public Aff_transformation_rep_baseH2<R>
{
  public:
    typedef typename R::RT         RT;
    typedef typename R::FT         FT;
    typedef typename R::Point_2      Point_2;
    typedef typename R::Vector_2     Vector_2;
    typedef typename R::Direction_2  Direction_2;

             Identity_repH2()
             {}

    virtual  ~Identity_repH2()
             {}


    virtual  Point_2
             transform(const Point_2 & p) const
             { return p; }

    virtual  Vector_2
             transform(const Vector_2 & v) const
             { return v; }

    virtual  Direction_2
             transform(const Direction_2 & d) const
             { return d; }

    virtual  Aff_transformationH2<R>
             inverse() const
             { return Aff_transformationH2<R>(IDENTITY); }

    virtual  bool
             is_even() const
             { return true; }

    virtual  Aff_transformation_repH2<R>
             general_form() const
             {
               const RT RT0(0);
               const RT RT1(1);
               return Aff_transformation_repH2<R>(  RT1, RT0, RT0,
                                                    RT0, RT1, RT0,
                                                    RT1 );
             }

    virtual  RT
             homogeneous(int i, int j) const
             { return (i==j) ? RT(1) : RT(0); }
    virtual  FT
             cartesian(int i, int j) const
             { return (i==j) ? FT(1) : FT(0); }
};

template < class R >
class Translation_repH2 : public Aff_transformation_rep_baseH2<R>
{
  public:
    typedef typename R::RT RT;
    typedef typename R::FT FT;
    typedef typename R::Point_2      Point_2;
    typedef typename R::Vector_2     Vector_2;
    typedef typename R::Direction_2  Direction_2;

             Translation_repH2()
             {}

             Translation_repH2(const Vector_2 & tv) : _tv(tv)
             {}

    virtual  ~Translation_repH2()
             {}

    virtual  Point_2
             transform(const Point_2 & p) const
             { return (p + _tv); }

    virtual  Vector_2
             transform(const Vector_2 & v) const
             { return (v); }

    virtual  Direction_2
             transform(const Direction_2 & d) const
             { return (d); }

    virtual  Aff_transformationH2<R>
             inverse() const
             { return Aff_transformationH2<R>(TRANSLATION, - _tv); }

    virtual  bool
             is_even() const
             { return true; }

    virtual  bool
             is_translation() const
             { return true; }

    virtual  Aff_transformation_repH2<R>
             general_form() const
             {
               return
               Aff_transformation_repH2<R>( _tv.hw(), RT(0) ,  _tv.hx(),
                                               RT(0), _tv.hw(),  _tv.hy(),
                                                                 _tv.hw() );
             }

    virtual  RT   homogeneous(int i, int j) const;
    virtual  FT   cartesian(int i, int j) const;

  private:
    Vector_2 _tv;
};

template < class R >
class Rotation_repH2 : public Aff_transformation_rep_baseH2<R>
{
  public:
    typedef typename R::RT RT;
    typedef typename R::FT FT;
    typedef typename R::Point_2      Point_2;
    typedef typename R::Vector_2     Vector_2;
    typedef typename R::Direction_2  Direction_2;

             Rotation_repH2()
             {
             }
             Rotation_repH2(const RT& sin, const RT& cos, const RT& den) :
               _sin(sin), _cos(cos), _den(den)
             {
               if ( den < RT(0)   )
               {
                 _sin = - _sin;
                 _cos = - _cos;
                 _den = - _den;
               };
             }
             ~Rotation_repH2()
             {
             }

    virtual  Point_2
             transform(const Point_2 & p) const
             {
               return Point_2( p.hx()*_cos  - p.hy()*_sin,
                               p.hx()*_sin  + p.hy()*_cos,
                               p.hw()*_den );
             }
    virtual  Vector_2
             transform(const Vector_2 & v) const
             {
               return Vector_2( v.hx()*_cos  - v.hy()*_sin,
                                            v.hx()*_sin  + v.hy()*_cos,
                                            v.hw()*_den );
             }
    virtual  Direction_2
             transform(const Direction_2 & d) const
             {
               return Direction_2( d.x()*_cos  - d.y()*_sin,
                                   d.x()*_sin  + d.y()*_cos);
             }
    virtual  Aff_transformationH2<R>
             inverse() const
             {
               return Aff_transformationH2<R>(ROTATION,
                                                       - _sin, _cos, _den);
             }
    virtual  bool
             is_even() const
             {
               return true;
             }

    virtual  bool
             is_rotation() const
             { return true; }

    virtual  Aff_transformation_repH2<R>
             general_form() const
             {
               return Aff_transformation_repH2<R>(
                           _cos,  - _sin,  RT(0)  ,
                           _sin,    _cos,  RT(0)  ,
                                           _den );
             }

    virtual  RT   homogeneous(int i, int j) const;
    virtual  FT   cartesian(int i, int j) const;

  private:
    RT  _sin;
    RT  _cos;
    RT  _den;
};

template < class R >
class Scaling_repH2 : public Aff_transformation_rep_baseH2<R>
{
  public:
    typedef typename R::RT RT;
    typedef typename R::FT FT;
    typedef typename R::Point_2      Point_2;
    typedef typename R::Vector_2     Vector_2;
    typedef typename R::Direction_2  Direction_2;

             Scaling_repH2()
             {}

             Scaling_repH2(const RT& scaling_numerator,
                                 const RT& scaling_denominator) :
               _sf_num(scaling_numerator), _sf_den(scaling_denominator)
             {
               if ( scaling_denominator < RT(0)   )
               {
                 _sf_num = - _sf_num;
                 _sf_den = - _sf_den;
               };
             }

    virtual  ~Scaling_repH2()
             {}

    virtual  Point_2
             transform(const Point_2 & p) const
             {
               return Point_2( p.hx() * _sf_num,
                               p.hy() * _sf_num,
                               p.hw() * _sf_den );
             }
    virtual  Vector_2
             transform(const Vector_2 & v) const
             {
               return Vector_2( v.hx() * _sf_num,
                                v.hy() * _sf_num,
                                v.hw() * _sf_den );
             }
    virtual  Direction_2
             transform(const Direction_2 & d) const
             { return (d); }

    virtual  Aff_transformationH2<R>
             inverse() const
             { return Aff_transformationH2<R>(SCALING, _sf_den, _sf_num); }

    virtual  bool
             is_even() const
             { return true; }

    virtual  bool
             is_scaling() const
             { return true; }

    virtual  Aff_transformation_repH2<R>
             general_form() const
             {
               return
               Aff_transformation_repH2<R>(_sf_num, RT(0)  , RT(0)  ,
                                               RT(0)  , _sf_num, RT(0)  ,
                                                                 _sf_den );
             }

    virtual  RT   homogeneous(int i, int j) const;
    virtual  FT   cartesian(int i, int j) const;


  private:
    RT  _sf_num;
    RT  _sf_den;
};

template < class R >
class Reflection_repH2 : public Aff_transformation_rep_baseH2<R>
{
  public:
    typedef typename R::RT RT;
    typedef typename R::FT FT;
    typedef typename R::Point_2      Point_2;
    typedef typename R::Vector_2     Vector_2;
    typedef typename R::Direction_2  Direction_2;
    typedef typename R::Line_2       Line_2;

             Reflection_repH2(const Line_2& l_) : l(l_) {}

    virtual  ~Reflection_repH2()
             {}

    virtual  Point_2
             transform(const Point_2 & p) const
             {
               Point_2 pp = l.projection(p);
               return p + (pp - p)*RT(2);
             }

    virtual  Vector_2
             transform(const Vector_2 & v) const
             {
               Line_2 l0( l.a(), l.b(), RT(0));
               Point_2 p = ORIGIN + v;
               Point_2 pp = l0.projection(p);
               return (p + (pp - p)*RT(2)) - ORIGIN;
             }

    virtual  Direction_2
             transform(const Direction_2 & d) const
             { return transform( d.vector() ).direction(); }

    virtual  Aff_transformationH2<R>
             inverse() const
             {
               return Aff_transformationH2<R>(REFLECTION, l);
             }

    virtual  bool
             is_even() const
             { return false; }

    virtual  bool
             is_reflection() const
             { return true; }

    virtual  Aff_transformation_repH2<R>
             general_form() const
             {
               const RT mRT2 = - RT(2);
               const RT& a = l.a();
               const RT& b = l.b();
               const RT& c = l.c();
               RT de = a*a + b*b;
               RT aa = b*b - a*a;
               RT bb = a*a - b*b;
               RT ab = a*b* mRT2;
               RT ac = a*c* mRT2;
               RT bc = b*c* mRT2;
               return
               Aff_transformation_repH2<R>( aa, ab, ac,
                                                ab, bb, bc,
                                                        de );
             }

    virtual  RT   homogeneous(int i, int j) const;
    virtual  FT   cartesian(int i, int j) const;


  private:
    Line_2   l;
};


template < class R_ >
class Aff_transformationH2
  : public Handle_for_virtual< Aff_transformation_rep_baseH2<R_> >
{
  typedef typename R_::FT                        FT;
  typedef typename R_::RT                        RT;
  typedef typename R_::Point_2      Point_2;
  typedef typename R_::Vector_2     Vector_2;
  typedef typename R_::Direction_2  Direction_2;
  typedef typename R_::Line_2       Line_2;

  typedef Handle_for_virtual< Aff_transformation_rep_baseH2<R_> > Base;
  using Base::initialize_with;

public:
  typedef R_                                    R;

          Aff_transformationH2();

          // Identity:

          Aff_transformationH2(const Identity_transformation);

          // Translation:

          Aff_transformationH2(const Translation, const Vector_2& v);

          // Scaling:

          Aff_transformationH2(const Scaling, const RT& a,
                               const RT& b = RT(1));

          Aff_transformationH2(const Scaling, const RT& xa, const RT& xb,
                                              const RT& ya, const RT& yb);

          // Reflection:
          Aff_transformationH2(const Reflection, const Line_2& l);

          // Rational Rotation:

          Aff_transformationH2(const Rotation,
                               const RT& sine,
                               const RT& cosine,
                               const RT& denominator);

          Aff_transformationH2(const Rotation,
                               const Direction_2& dir,
                               const RT& n,
                               const RT& d = RT(1));

          // Orthogonal Transformation:

          Aff_transformationH2(const Vector_2& v,
                               const RT& sine,
                               const RT& cosine,
                               const RT& denominator,
                               const RT& scaling_numerator = RT(1),
                               const RT& scaling_denominator = RT(1))
  {
    Aff_transformationH2<R>
        scaling(SCALING,scaling_numerator,scaling_denominator);
    Aff_transformationH2<R> combination =
          Aff_transformationH2<R>(TRANSLATION, scaling.inverse().transform(-v))
        * scaling
        * Aff_transformationH2<R>(ROTATION, sine, cosine, denominator)
        * Aff_transformationH2<R>(TRANSLATION, v ) ;

    *this = combination;
  }

          // General affine transformation
          //    | a b c |   |x|
          //    | d e f | * |y|
          //    | 0 0 g |   |w|

          Aff_transformationH2(const RT& a, const RT& b, const RT& c,
                               const RT& d, const RT& e, const RT& f,
                                                         const RT& g = RT(1));

          Aff_transformationH2(const RT& a, const RT& b,
                               const RT& d, const RT& e,
                                                         const RT& g = RT(1));

    Point_2     transform(const Point_2& p) const;
    Vector_2    transform(const Vector_2& v) const;
    Direction_2 transform(const Direction_2& d) const;
    Line_2      transform(const Line_2& l) const;

    Aff_transformationH2<R> inverse() const;
    bool                    is_even() const;
    bool                    is_odd()  const;

    bool                    is_translation() const;
    bool                    is_scaling() const;
    bool                    is_rotation() const;
    bool                    is_reflection() const;

                            // Access functions for matrix form
    FT                      cartesian(int i, int j) const;
    RT                      homogeneous(int i, int j) const;
    FT                      m(int i, int j) const
                            { return cartesian(i,j); }
    RT                      hm(int i, int j) const
                            { return homogeneous(i,j); }

    Aff_transformation_repH2<R>
                            general_form() const;

//  friend   Aff_transformationH2<R>
//    operator* <>
//              (const Aff_transformationH2<R>& left_argument,
//               const Aff_transformationH2<R>& right_argument );

    Aff_transformationH2<R>
    operator*(const Aff_transformationH2<R>& right_argument ) const;


    bool operator==(const Aff_transformationH2 &t)const
    {
      for(int i=0; i<3; ++i)
        for(int j = 0; j< 3; ++j)
          if(homogeneous(i,j)!=t.homogeneous(i,j))
            return false;
      return true;
    }

    bool operator!=(const Aff_transformationH2 &t)const
    {
      return !(*this == t);
    }

};

template < class R >
Aff_transformationH2<R>::Aff_transformationH2()
{ initialize_with(Aff_transformation_repH2<R>()); }

template < class R >
Aff_transformationH2<R>::
Aff_transformationH2(const Identity_transformation)
{ initialize_with(Identity_repH2<R>()); }

template < class R >
Aff_transformationH2<R>::
Aff_transformationH2(const Translation,
                     const typename Aff_transformationH2<R>::Vector_2& v)
{ initialize_with(Translation_repH2<R>( v )); }

template < class R >
Aff_transformationH2<R>::
Aff_transformationH2(const Scaling, const RT& a, const RT& b)
{ initialize_with(Scaling_repH2<R>( a, b)); }

template < class R >
Aff_transformationH2<R>::
Aff_transformationH2( const Scaling, const RT& xa, const RT& xb,
                                     const RT& ya, const RT& yb)
{
  initialize_with(Aff_transformation_repH2<R>(xa*yb,  RT(0),  RT(0),
                                              RT(0),  ya*xb,  RT(0),
                                              xb*yb  ));
}

template < class R >
Aff_transformationH2<R>::
Aff_transformationH2(const Reflection,
                     const typename Aff_transformationH2<R>::Line_2& l)
{ initialize_with(Reflection_repH2<R>( l)); }

template < class R >
Aff_transformationH2<R>::
Aff_transformationH2(const Rotation,
                     const RT& sine,
                     const RT& cosine,
                     const RT& denominator)
{ initialize_with(Rotation_repH2<R>(sine, cosine, denominator)); }

template < class R >
Aff_transformationH2<R>::
Aff_transformationH2(const Rotation,
                     const typename Aff_transformationH2<R>::Direction_2& dir,
                     const RT& n,
                     const RT& d)
{
 const RT   RTzero = RT(0)  ;
 CGAL_kernel_precondition( n > RTzero );
 CGAL_kernel_precondition( d > RTzero );
 RT   sin;
 RT   cos;
 RT   den;

 rational_rotation_approximation(dir.x(), dir.y(), sin, cos, den, n, d);
 initialize_with(Rotation_repH2<R>( sin, cos, den ));
}

template < class R >
Aff_transformationH2<R>::
Aff_transformationH2( const RT& a, const RT& b, const RT& c,
                      const RT& d, const RT& e, const RT& f,
                                                const RT& g)
{
  initialize_with(Aff_transformation_repH2<R>( a,   b,   c,
                                               d,   e,   f,
                                               g  ));
}

template < class R >
Aff_transformationH2<R>::
Aff_transformationH2( const RT& a, const RT& b,
                      const RT& d, const RT& e,
                      const RT& g)
{
  initialize_with(Aff_transformation_repH2<R>( a,   b,   RT(0),
                                               d,   e,   RT(0),
                                               g  ));
}

template < class R >
typename Aff_transformationH2<R>::Point_2
Aff_transformationH2<R>::
transform(const typename Aff_transformationH2<R>::Point_2& p) const
{ return this->Ptr()->transform(p); }


template < class R >
typename Aff_transformationH2<R>::Vector_2
Aff_transformationH2<R>::
transform( const typename Aff_transformationH2<R>::Vector_2& v) const
{ return this->Ptr()->transform(v); }

template < class R >
typename Aff_transformationH2<R>::Direction_2
Aff_transformationH2<R>::
transform( const typename Aff_transformationH2<R>::Direction_2& d) const
{ return this->Ptr()->transform(d); }

template < class R >
typename Aff_transformationH2<R>::Line_2
Aff_transformationH2<R>::
transform( const typename Aff_transformationH2<R>::Line_2& l) const
{ return Line_2( transform( l.point(0)), transform( l.point(1)) ); }

template < class R >
Aff_transformationH2<R>
Aff_transformationH2<R>::
inverse() const
{ return this->Ptr()->inverse(); }

template < class R >
bool
Aff_transformationH2<R>::
is_even() const
{ return this->Ptr()->is_even(); }

template < class R >
bool
Aff_transformationH2<R>::
is_odd() const
{ return ! is_even(); }

template < class R >
bool
Aff_transformationH2<R>::
is_translation() const
{ return this->Ptr()->is_translation(); }

template < class R >
bool
Aff_transformationH2<R>::
is_scaling() const
{ return this->Ptr()->is_scaling(); }

template < class R >
bool
Aff_transformationH2<R>::
is_rotation() const
{ return this->Ptr()->is_rotation(); }

template < class R >
bool
Aff_transformationH2<R>::
is_reflection() const
{ return this->Ptr()->is_reflection(); }

template < class R >
inline
typename Aff_transformationH2<R>::FT
Aff_transformationH2<R>::
cartesian(int i, int j) const
{ return this->Ptr()->cartesian(i,j); }

template < class R >
inline
typename Aff_transformationH2<R>::RT
Aff_transformationH2<R>::
homogeneous(int i, int j) const
{ return this->Ptr()->homogeneous(i,j); }

template < class R >
Aff_transformation_repH2<R>
Aff_transformationH2<R>::
general_form() const
{ return this->Ptr()->general_form(); }

template <class R>
Aff_transformationH2<R>
//operator*(const Aff_transformationH2<R>& left_argument,
//          const Aff_transformationH2<R>& right_argument )
Aff_transformationH2<R>::
operator*(const Aff_transformationH2<R>& right_argument) const
{
  return _general_transformation_composition(
                  this->Ptr()->general_form(),
                  right_argument.Ptr()->general_form() );
}

template <class R>
std::ostream&
operator<<(std::ostream& out, const Aff_transformationH2<R>& t)
{
  typename R::RT RT0(0);
  Aff_transformation_repH2<R> r = t.Ptr()->general_form();
  return out << "| "<< r.a << ' ' << r.b << ' ' << r.c << " |\n"
             << "| "<< r.d << ' ' << r.e << ' ' << r.f << " |\n"
             << "| "<< RT0 << ' ' << RT0 << ' ' << r.g << " |\n";
}

template <class R>
Aff_transformationH2<R>
_general_transformation_composition( Aff_transformation_repH2<R> l,
                                     Aff_transformation_repH2<R> r )
{
return Aff_transformationH2<R>(
       l.a*r.a + l.b*r.d,   l.a*r.b + l.b*r.e,   l.a*r.c + l.b*r.f + l.c*r.g,
       l.d*r.a + l.e*r.d,   l.d*r.b + l.e*r.e,   l.d*r.c + l.e*r.f + l.f*r.g,
                                                 l.g*r.g                     );
}

template < class R >
typename Aff_transformation_repH2<R>::RT
Aff_transformation_repH2<R>::homogeneous(int i, int j) const
{
  CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
  switch (i)
  {
    case 0: switch (j)
            {
              case 0: return a;
              case 1: return b;
              case 2: return c;
              default: CGAL_unreachable();
            }
            break;
    case 1: switch (j)
            {
              case 0: return d;
              case 1: return e;
              case 2: return f;
              default: CGAL_unreachable();
            }
            break;
    case 2: switch (j)
            {
              case 0: return RT(0);
              case 1: return RT(0);
              case 2: return g;
              default: CGAL_unreachable();
            }
  }
  CGAL_unreachable();
  return RT(0);
}

template < class R >
typename Aff_transformation_repH2<R>::FT
Aff_transformation_repH2<R>::cartesian(int i, int j) const
{
  CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
  if ( (i == 2) && (j == 2) )  return FT(1);
  return FT(homogeneous(i,j)) / FT(g);
}

template < class R >
typename Translation_repH2<R>::RT
Translation_repH2<R>::homogeneous(int i, int j) const
{
  CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
  switch (i)
  {
    case 0: switch (j)
            {
              case 0: return _tv.hw();
              case 1: return RT(0);
              case 2: return _tv.hx();
              default: CGAL_unreachable();
            }
            break;
    case 1: switch (j)
            {
              case 0: return RT(0);
              case 1: return _tv.hw();
              case 2: return _tv.hy();
              default: CGAL_unreachable();
            }
            break;
    case 2: switch (j)
            {
              case 0: return RT(0);
              case 1: return RT(0);
              case 2: return _tv.hw();
              default: CGAL_unreachable();
            }
  }
  CGAL_unreachable();
  return RT(0);
}

template < class R >
typename Translation_repH2<R>::FT
Translation_repH2<R>::cartesian(int i, int j) const
{
  CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
  switch (i)
  {
    case 0: switch (j)
            {
              case 0: return FT(1);
              case 1: return FT(0);
              case 2: return _tv.x();
              default: CGAL_unreachable();
            }
            break;
    case 1: switch (j)
            {
              case 0: return FT(0);
              case 1: return FT(1);
              case 2: return _tv.y();
              default: CGAL_unreachable();
            }
            break;
    case 2: switch (j)
            {
              case 0: return FT(0);
              case 1: return FT(0);
              case 2: return FT(1);
              default: CGAL_unreachable();
            }
  }
  CGAL_unreachable();
  return FT(0);
}

template < class R >
typename Rotation_repH2<R>::RT
Rotation_repH2<R>::
homogeneous(int i, int j) const
{
  CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
  switch (i)
  {
    case 0: switch (j)
            {
              case 0: return _cos;
              case 1: return - _sin;
              case 2: return RT(0);
              default: CGAL_unreachable();
            }
            break;
    case 1: switch (j)
            {
              case 0: return _sin;
              case 1: return _cos;
              case 2: return RT(0);
              default: CGAL_unreachable();
            }
            break;
    case 2: switch (j)
            {
              case 0: return RT(0);
              case 1: return RT(0);
              case 2: return _den;
              default: CGAL_unreachable();
            }
  }
  CGAL_unreachable();
  return RT(0);
}

template < class R >
typename Rotation_repH2<R>::FT
Rotation_repH2<R>::
cartesian(int i, int j) const
{
  CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
  switch (i)
  {
    case 0: switch (j)
            {
              case 0: return FT(_cos) / FT(_den);
              case 1: return - FT(_sin) / FT(_den);
              case 2: return FT(0);
              default: CGAL_unreachable();
            }
            break;
    case 1: switch (j)
            {
              case 0: return FT(_sin) / FT(_den);
              case 1: return FT(_cos) / FT(_den);
              case 2: return FT(0);
              default: CGAL_unreachable();
            }
            break;
    case 2: switch (j)
            {
              case 0: return FT(0);
              case 1: return FT(0);
              case 2: return FT(1);
              default: CGAL_unreachable();
            }
  }
  CGAL_unreachable();
  return FT(0);
}

template < class R >
typename Scaling_repH2<R>::RT
Scaling_repH2<R>::
homogeneous(int i, int j) const
{
  CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
  switch (i)
  {
    case 0: switch (j)
            {
              case 0: return _sf_num;
              case 1: return RT(0);
              case 2: return RT(0);
              default: CGAL_unreachable();
            }
            break;
    case 1: switch (j)
            {
              case 0: return RT(0);
              case 1: return _sf_num;
              case 2: return RT(0);
              default: CGAL_unreachable();
            }
            break;
    case 2: switch (j)
            {
              case 0: return RT(0);
              case 1: return RT(0);
              case 2: return _sf_den;
              default: CGAL_unreachable();
            }
  }
  CGAL_unreachable();
  return RT(0);
}

template <class R>
typename Scaling_repH2<R>::FT
Scaling_repH2<R>::
cartesian(int i, int j) const
{
  CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
  switch (i)
  {
    case 0: switch (j)
            {
              case 0: return FT(_sf_num) / FT(_sf_den);
              case 1: return FT(0);
              case 2: return FT(0);
              default: CGAL_unreachable();
            }
            break;
    case 1: switch (j)
            {
              case 0: return FT(0);
              case 1: return FT(_sf_num) / FT(_sf_den);
              case 2: return FT(0);
              default: CGAL_unreachable();
            }
            break;
    case 2: switch (j)
            {
              case 0: return FT(0);
              case 1: return FT(0);
              case 2: return FT(1);
              default: CGAL_unreachable();
            }
  }
  CGAL_unreachable();
  return FT(0);
}

template < class R >
typename Reflection_repH2<R>::RT
Reflection_repH2<R>::
homogeneous(int i, int j) const
{
  CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
  RT mRT2 = -RT(2);
  switch (i)
  {
    case 0: switch (j)
            {
              case 0: return l.b()*l.b() - l.a()*l.a();
              case 1: return l.a()*l.b()*mRT2;
              case 2: return l.a()*l.c()*mRT2;
              default: CGAL_unreachable();
            }
            break;
    case 1: switch (j)
            {
              case 0: return l.a()*l.b()*mRT2;
              case 1: return l.a()*l.a() - l.b()*l.b();
              case 2: return l.b()*l.c()*mRT2;
              default: CGAL_unreachable();
            }
            break;
    case 2: switch (j)
            {
              case 0: return RT(0);
              case 1: return RT(0);
              case 2: return l.a()*l.a() + l.b()*l.b();
              default: CGAL_unreachable();
            }
  }
  CGAL_unreachable();
  return RT(0);
}

template <class R>
typename Reflection_repH2<R>::FT
Reflection_repH2<R>::
cartesian(int i, int j) const
{
  CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
  FT de = FT( l.a()*l.a() + l.b()*l.b() );
  switch (i)
  {
    case 0: switch (j)
            {
              case 0: return FT( l.b()-l.a() ) / FT( l.a()+l.b());
              case 1: return FT( homogeneous(0,1)) / de;
              case 2: return FT( homogeneous(0,2)) / de;
              default: CGAL_unreachable();
            }
            break;
    case 1: switch (j)
            {
              case 0: return FT( homogeneous(1,0)) / de;
              case 1: return FT( l.a()-l.b() ) / FT( l.a()+l.b());
              case 2: return FT( homogeneous(1,2)) / de;
              default: CGAL_unreachable();
            }
            break;
    case 2: switch (j)
            {
              case 0: return FT(0);
              case 1: return FT(0);
              case 2: return FT(1);
              default: CGAL_unreachable();
            }
  }
  CGAL_unreachable();
  return FT(0);
}

} //namespace CGAL

#endif // CGAL_AFF_TRANSFORMATIONH2_H