1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
#ifndef CLUSTER_CLASSIFICATION_H
#define CLUSTER_CLASSIFICATION_H
//#define CGAL_DO_NOT_USE_BOYKOV_KOLMOGOROV_MAXFLOW_SOFTWARE
#define CGAL_CLASSIFICATION_VERBOSE
#include <CGAL/Three/Scene_item.h>
#include "Scene_points_with_normal_item.h"
#include "Item_classification_base.h"
#include "Kernel_type.h"
#include "Point_set_3.h"
#include <CGAL/Classification.h>
#include <iostream>
typedef CGAL::Parallel_if_available_tag Concurrency_tag;
class Cluster_classification : public Item_classification_base
{
public:
typedef Kernel::Point_3 Point_3;
typedef Kernel::Vector_3 Vector_3;
typedef Point_set::Point_map Point_map;
typedef Point_set::Vector_map Vector_map;
typedef CGAL::Classification::Point_set_feature_generator<Kernel, Point_set, Point_map> Generator;
typedef CGAL::Classification::Local_eigen_analysis Local_eigen_analysis;
typedef CGAL::Classification::Feature::Cluster_mean_of_feature Mean_of_feature;
typedef CGAL::Classification::Feature::Cluster_variance_of_feature Variance_of_feature;
typedef CGAL::Classification::Cluster<Point_set, Point_map> Cluster;
struct Point_set_with_cluster_info
: public CGAL::cpp98::unary_function<const Point_set::Index&,
std::pair<Kernel::Point_3, int> >
{
Point_set* point_set;
Point_set::Property_map<int>* cluster_id;
Point_set_with_cluster_info (Point_set* point_set,
Point_set::Property_map<int>& cluster_id)
: point_set (point_set)
, cluster_id (&cluster_id)
{ }
std::pair<Kernel::Point_3, int> operator() (const Point_set::Index& idx) const
{
return std::make_pair (point_set->point(idx), (*cluster_id)[idx]);
}
};
public:
Cluster_classification(Scene_points_with_normal_item* points);
~Cluster_classification();
CGAL::Three::Scene_item* item() { return m_points; }
void erase_item() { m_points = nullptr; }
CGAL::Bbox_3 bbox()
{
if (m_points->point_set()->nb_selected_points() == 0)
return m_points->bbox();
CGAL::Bbox_3 bb = CGAL::bbox_3 (boost::make_transform_iterator
(m_points->point_set()->first_selected(),
CGAL::Property_map_to_unary_function<Point_set::Point_map>
(m_points->point_set()->point_map())),
boost::make_transform_iterator
(m_points->point_set()->end(),
CGAL::Property_map_to_unary_function<Point_set::Point_map>
(m_points->point_set()->point_map())));
double xcenter = (bb.xmax() + bb.xmin()) / 2.;
double ycenter = (bb.ymax() + bb.ymin()) / 2.;
double zcenter = (bb.zmax() + bb.zmin()) / 2.;
double dx = bb.xmax() - bb.xmin();
double dy = bb.ymax() - bb.ymin();
double dz = bb.zmax() - bb.zmin();
dx *= 10.;
dy *= 10.;
dz *= 10.;
return CGAL::Bbox_3 (xcenter - dx, ycenter - dy, zcenter - dz,
xcenter + dx, ycenter + dy, zcenter + dz);
}
void compute_features (std::size_t nb_scales, float voxel_size);
void add_remaining_point_set_properties_as_features(Feature_set& feature_set);
void select_random_region();
void add_cluster_features ()
{
m_eigen = std::make_shared<Local_eigen_analysis>
(Local_eigen_analysis::create_from_point_clusters(m_clusters,
Concurrency_tag()));
m_features.template add<CGAL::Classification::Feature::Cluster_size> (m_clusters);
m_features.template add<CGAL::Classification::Feature::Cluster_vertical_extent> (m_clusters);
m_features.template add<CGAL::Classification::Feature::Eigenvalue> (m_clusters, *m_eigen, 0);
m_features.template add<CGAL::Classification::Feature::Eigenvalue> (m_clusters, *m_eigen, 1);
m_features.template add<CGAL::Classification::Feature::Eigenvalue> (m_clusters, *m_eigen, 2);
// m_features.template add<CGAL::Classification::Feature::Linearity> (m_clusters, *m_eigen);
// m_features.template add<CGAL::Classification::Feature::Planarity> (m_clusters, *m_eigen);
// m_features.template add<CGAL::Classification::Feature::Sphericity> (m_clusters, *m_eigen);
// m_features.template add<CGAL::Classification::Feature::Omnivariance> (m_clusters, *m_eigen);
// m_features.template add<CGAL::Classification::Feature::Anisotropy> (m_clusters, *m_eigen);
// m_features.template add<CGAL::Classification::Feature::Eigentropy> (m_clusters, *m_eigen);
// m_features.template add<CGAL::Classification::Feature::Sum_eigenvalues> (m_clusters, *m_eigen);
// m_features.template add<CGAL::Classification::Feature::Surface_variation> (m_clusters, *m_eigen);
// m_features.template add<CGAL::Classification::Feature::Verticality<Kernel> > (m_clusters, *m_eigen);
}
template <typename Type>
bool try_adding_simple_feature (Feature_set& feature_set, const std::string& name)
{
typedef typename Point_set::template Property_map<Type> Pmap;
std::optional<Pmap> pmap = m_points->point_set()->template property_map<Type>(name.c_str());
if (pmap.has_value())
feature_set.template add<CGAL::Classification::Feature::Simple_feature <Point_set, Pmap> >
(*(m_points->point_set()), pmap.value(), name.c_str());
return pmap.has_value();
}
void add_selection_to_training_set (std::size_t label)
{
for (Point_set::const_iterator it = m_points->point_set()->first_selected();
it != m_points->point_set()->end(); ++ it)
{
int cid = m_cluster_id[*it];
if (cid != -1)
{
m_clusters[cid].training() = int(label);
m_clusters[cid].label() = int(label);
}
}
m_points->resetSelection();
if (m_index_color == 1 || m_index_color == 2)
change_color (m_index_color);
}
void reset_training_set(std::size_t label)
{
for (std::size_t i = 0; i < m_clusters.size(); ++ i)
if (m_clusters[i].training() == int(label))
m_clusters[i].training() = -1;
if (m_index_color == 1 || m_index_color == 2)
change_color (m_index_color);
}
void reset_training_set_of_selection()
{
for (Point_set::const_iterator it = m_points->point_set()->first_selected();
it != m_points->point_set()->end(); ++ it)
{
int cid = m_cluster_id[*it];
if (cid != -1)
{
m_clusters[cid].training() = -1;
m_clusters[cid].label() = -1;
}
}
if (m_index_color == 1 || m_index_color == 2)
change_color (m_index_color);
}
void reset_training_sets()
{
for (std::size_t i = 0; i < m_clusters.size(); ++ i)
m_clusters[i].training() = -1;
if (m_index_color == 1 || m_index_color == 2)
change_color (m_index_color);
}
void validate_selection ()
{
for (Point_set::const_iterator it = m_points->point_set()->first_selected();
it != m_points->point_set()->end(); ++ it)
{
int cid = m_cluster_id[*it];
if (cid != -1)
m_clusters[cid].training() = m_clusters[cid].label();
}
m_points->resetSelection();
if (m_index_color == 1 || m_index_color == 2)
change_color (m_index_color);
}
void train(int classifier, const QMultipleInputDialog& dialog);
bool run (int method, int classifier, std::size_t subdivisions, double smoothing);
void update_color () { change_color (m_index_color); }
void change_color (int index, float* vmin = nullptr, float* vmax = nullptr);
CGAL::Three::Scene_item* generate_one_item (const char* name,
int label) const
{
Scene_points_with_normal_item* points_item
= new Scene_points_with_normal_item;
points_item->setName (QString("%1 (%2)").arg(name).arg(m_labels[label]->name().c_str()));
points_item->setColor (label_qcolor (m_labels[label]));
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->end(); ++ it)
{
int cid = m_cluster_id[*it];
if (cid != -1)
{
int c = m_clusters[cid].label();
if (c == label)
points_item->point_set()->insert (m_points->point_set()->point(*it));
}
}
return points_item;
}
void generate_one_item_per_label(std::vector<CGAL::Three::Scene_item*>& items,
const char* name) const
{
std::vector<Scene_points_with_normal_item*> points_item
(m_labels.size(), nullptr);
for (std::size_t i = 0; i < m_labels.size(); ++ i)
{
points_item[i] = new Scene_points_with_normal_item;
points_item[i]->setName (QString("%1 (%2)").arg(name).arg(m_labels[i]->name().c_str()));
points_item[i]->setColor (label_qcolor (m_labels[i]));
items.push_back (points_item[i]);
}
for (Point_set::const_iterator it = m_points->point_set()->begin();
it != m_points->point_set()->end(); ++ it)
{
int cid = m_cluster_id[*it];
if (cid != -1)
{
int c = m_clusters[cid].label();
points_item[c]->point_set()->insert (m_points->point_set()->point(*it));
}
}
}
QColor add_new_label (const char* name)
{
QColor out = Item_classification_base::add_new_label (name);
update_comments_of_point_set_item();
return out;
}
void remove_label (std::size_t position)
{
Item_classification_base::remove_label (position);
for (std::size_t i = 0; i < m_clusters.size(); ++ i)
{
if (m_clusters[i].training() == int(position))
m_clusters[i].training() = -1;
else if (m_clusters[i].training() > int(position))
m_clusters[i].training() --;
if (m_clusters[i].label() == int(position))
m_clusters[i].label() = -1;
else if (m_clusters[i].label() > int(position))
m_clusters[i].label() --;
}
update_comments_of_point_set_item();
}
void fill_display_combo_box (QComboBox* cb, QComboBox* cb1) const
{
cb->addItem ("Clusters");
Item_classification_base::fill_display_combo_box(cb, cb1);
}
int real_index_color() const;
void reset_indices();
void backup_existing_colors_and_add_new();
void reset_colors();
private:
void update_comments_of_point_set_item()
{
std::string& comments = m_points->comments();
// Remove previously registered labels from comments
std::string new_comment;
std::istringstream stream (comments);
std::string line;
while (getline(stream, line))
{
std::stringstream iss (line);
std::string tag;
if (iss >> tag && tag == "label")
continue;
new_comment += line + "\n";
}
comments = new_comment;
comments += "label -1 unclassified\n";
for (std::size_t i = 0; i < m_labels.size(); ++ i)
{
std::ostringstream oss;
oss << "label " << i << " " << m_labels[i]->name() << std::endl;
comments += oss.str();
}
}
template <typename Classifier>
bool run (int method, const Classifier& classifier,
std::size_t subdivisions, double smoothing)
{
std::vector<int> indices (m_clusters.size(), -1);
if (method == 0)
CGAL::Classification::classify<Concurrency_tag> (m_clusters,
m_labels, classifier,
indices);
else if (method == 1)
CGAL::Classification::classify_with_local_smoothing<Concurrency_tag>
(m_clusters,
CGAL::Identity_property_map<Cluster>(),
m_labels, classifier,
Cluster::Neighbor_query(),
indices);
else if (method == 2)
CGAL::Classification::classify_with_graphcut<Concurrency_tag>
(m_clusters,
CGAL::Identity_property_map<Cluster>(),
m_labels, classifier,
Cluster::Neighbor_query(),
smoothing, subdivisions, indices);
std::vector<int> ground_truth(m_clusters.size(), -1);
for (std::size_t i = 0; i < m_clusters.size(); ++ i)
{
m_clusters[i].label() = indices[i];
ground_truth[i] = m_clusters[i].training();
}
if (m_index_color == 1 || m_index_color == 2)
change_color (m_index_color);
std::cerr << "Precision, recall, F1 scores and IoU:" << std::endl;
CGAL::Classification::Evaluation eval (m_labels, ground_truth, indices);
for (std::size_t i = 0; i < m_labels.size(); ++ i)
{
std::cerr << " * " << m_labels[i]->name() << ": "
<< eval.precision(m_labels[i]) << " ; "
<< eval.recall(m_labels[i]) << " ; "
<< eval.f1_score(m_labels[i]) << " ; "
<< eval.intersection_over_union(m_labels[i]) << std::endl;
}
std::cerr << "Accuracy = " << eval.accuracy() << std::endl
<< "Mean F1 score = " << eval.mean_f1_score() << std::endl
<< "Mean IoU = " << eval.mean_intersection_over_union() << std::endl;
return true;
}
Scene_points_with_normal_item* m_points;
std::vector<Cluster> m_clusters;
Point_set::Property_map<unsigned char> m_red;
Point_set::Property_map<unsigned char> m_green;
Point_set::Property_map<unsigned char> m_blue;
Point_set::Property_map<CGAL::IO::Color> m_color;
Point_set::Property_map<int> m_cluster_id;
Point_set::Property_map<int> m_training;
Point_set::Property_map<int> m_classif;
std::vector<std::vector<float> > m_label_probabilities;
int m_index_color;
std::shared_ptr<Local_eigen_analysis> m_eigen;
bool m_input_is_las;
}; // end class Cluster_classification
#endif // CLUSTER_CLASSIFICATION_H
|