File: Surface_reconstruction_advancing_front_impl.cpp

package info (click to toggle)
cgal 6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 144,912 kB
  • sloc: cpp: 810,858; ansic: 208,477; sh: 493; python: 411; makefile: 286; javascript: 174
file content (238 lines) | stat: -rw-r--r-- 8,201 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#include <CGAL/Advancing_front_surface_reconstruction.h>
#include <CGAL/structure_point_set.h>
#include <CGAL/linear_least_squares_fitting_3.h>

#include "Kernel_type.h"
#include "SMesh_type.h"
#include "Scene_points_with_normal_item.h"

typedef std::array<std::size_t,3> Facet;
typedef CGAL::Point_set_with_structure<Kernel> Structuring;
typedef Kernel::Plane_3 Plane_3;

struct Construct{
  typedef std::array<std::size_t,3> Facet;
  typedef typename boost::property_map<SMesh, boost::vertex_point_t>::type VPmap;
  SMesh& mesh;
  VPmap vpmap;
  std::vector<typename boost::graph_traits<SMesh>::vertex_descriptor> vertices;

  template <typename PointRange>
  Construct(SMesh& mesh, const PointRange& points)
    : mesh(mesh)
  {
    vpmap = get(boost::vertex_point, mesh);
    for (const auto& p : points)
    {
      typename boost::graph_traits<SMesh>::vertex_descriptor v;
      v = add_vertex(mesh);
      vertices.push_back(v);
      put(vpmap, v,  p);
    }
  }

  Construct& operator=(const Facet f)
  {
    typedef typename boost::graph_traits<SMesh>::vertex_descriptor vertex_descriptor;
    std::vector<vertex_descriptor> facet;
    facet.resize(3);
    facet[0]=vertices[f[0]];
    facet[1]=vertices[f[1]];
    facet[2]=vertices[f[2]];
    CGAL::Euler::add_face(facet, mesh);
    return *this;
  }
  Construct&
  operator*() { return *this; }
  Construct&
  operator++() { return *this; }
  Construct
  operator++(int) { return *this; }
};

struct Radius {

  double bound;

  Radius(double bound)
    : bound(bound)
  {}

  template <typename AdvancingFront, typename Cell_handle>
  double operator() (const AdvancingFront& adv, Cell_handle& c,
                     const int& index) const
  {
    // bound == 0 is better than bound < infinity
    // as it avoids the distance computations
    if(bound == 0){
      return adv.smallest_radius_delaunay_sphere (c, index);
    }

    // If radius > bound, return infinity so that facet is not used
    double d  = 0;
    d = sqrt(squared_distance(c->vertex((index+1)%4)->point(),
                              c->vertex((index+2)%4)->point()));
    if(d>bound) return adv.infinity();
    d = sqrt(squared_distance(c->vertex((index+2)%4)->point(),
                               c->vertex((index+3)%4)->point()));
    if(d>bound) return adv.infinity();
    d = sqrt(squared_distance(c->vertex((index+1)%4)->point(),
                               c->vertex((index+3)%4)->point()));
    if(d>bound) return adv.infinity();

    // Otherwise, return usual priority value: smallest radius of
    // delaunay sphere
    return adv.smallest_radius_delaunay_sphere (c, index);
  }
};


template <typename Structuring>
struct Priority_with_structure_coherence {

  Structuring& structuring;
  double bound;

  Priority_with_structure_coherence(Structuring& structuring,
                                    double bound)
    : structuring (structuring), bound (bound)
  {}

  template <typename AdvancingFront, typename Cell_handle>
  double operator() (AdvancingFront& adv, Cell_handle& c,
                     const int& index) const
  {
    // If perimeter > bound, return infinity so that facet is not used
    if (bound != 0)
      {
        double d  = 0;
        d = sqrt(squared_distance(c->vertex((index+1)%4)->point(),
                                  c->vertex((index+2)%4)->point()));
        if(d>bound) return adv.infinity();
        d += sqrt(squared_distance(c->vertex((index+2)%4)->point(),
                                   c->vertex((index+3)%4)->point()));
        if(d>bound) return adv.infinity();
        d += sqrt(squared_distance(c->vertex((index+1)%4)->point(),
                                   c->vertex((index+3)%4)->point()));
        if(d>bound) return adv.infinity();
      }

    Facet f = {{ c->vertex ((index + 1) % 4)->info (),
                 c->vertex ((index + 2) % 4)->info (),
                 c->vertex ((index + 3) % 4)->info () }};

    double weight = 100. * (5 - structuring.facet_coherence (f));

    return weight * adv.smallest_radius_delaunay_sphere (c, index);
  }

};

void get_planes_from_shape_map (const Point_set& points,
                                Point_set::Property_map<int> shape_map,
                                std::vector<Plane_3>& planes)
{
  std::vector<Point_set::Index> sorted_indices;
  sorted_indices.reserve (points.size());
  std::copy (points.begin(), points.end(), std::back_inserter (sorted_indices));

  std::sort (sorted_indices.begin(), sorted_indices.end(),
             [&](const Point_set::Index& a, const Point_set::Index& b) -> bool
             {
               return shape_map[a] < shape_map[b];
             });

  std::size_t nb_planes = shape_map[sorted_indices.back()] + 1;
  planes.reserve (nb_planes);
  std::cerr << nb_planes << " found in the shape map" << std::endl;

  std::vector<Point_set::Index>::iterator begin = sorted_indices.end();
  int plane_idx = shape_map[sorted_indices.front()];
  if (plane_idx != -1)
    begin = sorted_indices.begin();

  for (std::vector<Point_set::Index>::iterator it = sorted_indices.begin();
       it != sorted_indices.end(); ++ it)
  {
    if (shape_map[*it] != plane_idx)
    {
      if (begin != sorted_indices.end())
      {
        Plane_3 plane;
        CGAL::linear_least_squares_fitting_3
          (boost::make_transform_iterator
           (begin, CGAL::Property_map_to_unary_function<Point_set::Point_map>(points.point_map())),
           boost::make_transform_iterator
           (it, CGAL::Property_map_to_unary_function<Point_set::Point_map>(points.point_map())),
           plane, CGAL::Dimension_tag<0>());
        planes.push_back (plane);
      }
      begin = it;
      plane_idx = shape_map[*it];
    }
  }
  Plane_3 plane;
  CGAL::linear_least_squares_fitting_3
    (boost::make_transform_iterator
     (begin, CGAL::Property_map_to_unary_function<Point_set::Point_map>(points.point_map())),
     boost::make_transform_iterator
     (sorted_indices.end(), CGAL::Property_map_to_unary_function<Point_set::Point_map>(points.point_map())),
     plane, CGAL::Dimension_tag<0>());
  planes.push_back (plane);
}

SMesh* advancing_front (const Point_set& points,
                        double longest_edge,
                        double radius_ratio_bound,
                        double beta,
                        bool structuring,
                        double sampling)
{
  SMesh* mesh = new SMesh;

  if (structuring) // todo
  {
    Point_set::Property_map<int> shape_map
      = points.property_map<int>("shape").value();

    typedef CGAL::Point_set_with_structure<Kernel> Structuring;
    std::vector<Plane_3> planes;

    get_planes_from_shape_map (points, shape_map, planes);
    Structuring structuring
      (points, planes,
       sampling,
       points.parameters().
       plane_map(CGAL::Identity_property_map<Plane_3>()).
       plane_index_map(shape_map));

    std::vector<Point_3> structured;
    structured.reserve (structuring.size());
    for (std::size_t i = 0; i < structuring.size(); ++ i)
      structured.push_back (structuring.point(i));
    std::cerr << structured.size() << " structured point(s) generated" << std::endl;

    Priority_with_structure_coherence<Structuring> priority
      (structuring, 10. * sampling);
    Construct construct(*mesh, structured);
    CGAL::advancing_front_surface_reconstruction(structured.begin(),
                                                 structured.end(),
                                                 construct,
                                                 priority,
                                                 radius_ratio_bound,
                                                 beta);
  }
  else
  {
    Radius filter(longest_edge);
    Construct construct (*mesh, points.points());
    CGAL::advancing_front_surface_reconstruction(points.points().begin(),
                                                 points.points().end(),
                                                 construct,
                                                 filter,
                                                 radius_ratio_bound,
                                                 beta);
  }

  return mesh;
}