1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
// LP solver for kernel
#include <CGAL/QP_functions.h>
#include <CGAL/QP_models.h>
// Taken from http://www.qhull.org/html/qhalf.htm
// If you do not know an interior point for the halfspaces, use linear programming
// to find one. Assume, n halfspaces defined by: aj*x1+bj*x2+cj*x3+dj>=0, j=1..n.
// Perform the following linear program:
// max(x5) aj*x1+bj*x2+cj*x3+dj*x4-x5>=0, j=1..n
// Then, if [x1,x2,x3,x4,x5] is an optimal m_solution with x4,x5>0 we get:
// aj*(x1/x4)+bj*(x2/x4)+cj*(x3/x4)+dj>=(x5/x4)>0, j=1..n
// and conclude that the point [x1/x4,x2/x4,x3/x4] is in the interior of all
// the halfspaces. Note that x5 is optimal, so this point is "way in" the
// interior (good for precision errors).
// After finding an interior point, the rest of the intersection algorithm is
// from Preparata & Shamos ['85, p. 316, "A simple case ..."]. Translate the
// halfspaces so that the interior point is the origin. Calculate the dual
// polytope. The dual polytope is the convex hull of the vertices dual to the
// original faces in regard to the unit sphere (i.e., halfspaces at distance
// d from the origin are dual to vertices at distance 1/d). Then calculate
// the resulting polytope, which is the dual of the dual polytope, and
// translate the origin back to the interior point [S. Spitz and S. Teller].
// NOTE: We changed this to max(x4) under constraints aj*x1+bj*x2+cj*x3+dj-x4>=0, j=1..n
// i.e. aj*x1+bj*x2+cj*x3-x4 >= -dj, j=1..n
// Then, if [x1,x2,x3,x4] is an optimal m_solution with x4 > 0 we pick
// the point [x1,x2,x3] as inside point.
template <class Kernel, class ET>
class Polyhedron_kernel
{
private:
// basic types
typedef typename Kernel::FT FT;
typedef typename Kernel::Point_3 Point;
typedef typename Kernel::Plane_3 Plane;
typedef typename Kernel::Vector_3 Vector;
typedef typename Kernel::Triangle_3 Triangle;
// program and solution types
typedef CGAL::Quadratic_program<double> LP;
typedef typename CGAL::Quadratic_program_solution<ET> Solution;
typedef typename Solution::Variable_value_iterator Variable_value_iterator;
// linear program
Solution m_solution;
Point m_inside_point;
public:
Polyhedron_kernel() {}
~Polyhedron_kernel() {}
public:
Point& inside_point() { return m_inside_point; }
const Point& inside_point() const { return m_inside_point; }
unsigned int number_of_iterations() { return m_solution.number_of_iterations(); }
public:
template < class InputIterator >
bool solve(InputIterator begin, InputIterator end)
{
// solve linear program with constraints Ax >= b
LP lp(CGAL::LARGER,false);
// column indices
const int index_x1 = 0;
const int index_x2 = 1;
const int index_x3 = 2;
const int index_x4 = 3;
int j = 0;
InputIterator it;
for(it = begin; it != end; it++, j++)
{
const Triangle& triangle = *it;
const Point& a = triangle[0];
const Point& b = triangle[1];
const Point& c = triangle[2];
Plane plane(a,c,b); // note a c b to get inward normal
Vector normal = unit_normal(plane);
FT aj = normal.x();
FT bj = normal.y();
FT cj = normal.z();
// constraint (line j): aj * x1 + bj * x2 + cj * x3 - x4 >= -dj
lp.set_a(index_x1, j, aj); // aj * x1
lp.set_a(index_x2, j, bj); // bj * x2
lp.set_a(index_x3, j, cj); // cj * x3
lp.set_a(index_x4, j, -1.0); // -x4
// right hand side (>= -dj)
FT dj = distance_to_origin(plane) * static_cast<int>(CGAL::sign(plane.d()));
lp.set_b(j, -dj);
}
// objective function -> max x4 (negative sign set because
// the lp solver always minimizes an objective function)
lp.set_c(index_x4,-1.0);
// add constraints over x4 (>= 0). somewhat redundant
// constraint as we later test for x4 > 0
lp.set_l(index_x4,true,0.0);
// solve the linear program
m_solution = CGAL::solve_linear_program(lp, ET());
if(m_solution.is_infeasible())
return false;
if(!m_solution.is_optimal())
return false;
// get variables
Variable_value_iterator X = m_solution.variable_values_begin();
// Problem: X[0], X[1], ..., X[3] are proxy objects from
// boost::facade_iterator. Those proxy objects are of type
// operator_brackets_proxy<Variable_value_iterator>, which
// is castable to a number type. In CGAL::to_double, the
// automatic selection of a Real_embeddable_traits does not
// work with such proxy objects (whose type is not
// recognized). That is why we need to select the
// Real_embeddable_traits manually, and create a functor
// to_double manually. -- Laurent Rineau, 2008/09/04
typedef CGAL::Real_embeddable_traits<typename Variable_value_iterator::value_type> RE_traits;
typename RE_traits::To_double to_double;
// solution if x4 > 0
double x4 = to_double(X[3]);
if(x4 <= 0.0)
return false;
// define inside point as (x1;x2;x3)
double x1 = to_double(X[0]);
double x2 = to_double(X[1]);
double x3 = to_double(X[2]);
m_inside_point = Point(x1,x2,x3);
return true;
}
Vector unit_normal(const Plane& plane)
{
Vector n = plane.orthogonal_vector();
return n / std::sqrt(n * n);
}
FT distance_to_origin(const Plane& plane)
{
return std::sqrt(CGAL::squared_distance(Point(CGAL::ORIGIN),plane));
}
};
template <class Polyhedron, class OutputIterator>
void get_triangles(Polyhedron& polyhedron,
OutputIterator out)
{
typedef typename boost::graph_traits<Polyhedron>::face_descriptor face_descriptor;
typedef typename boost::graph_traits<Polyhedron>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::property_map<Polyhedron, CGAL::vertex_point_t>::type VPmap;
typedef typename boost::property_traits<VPmap>::value_type Point;
typedef typename CGAL::Kernel_traits<Point>::Kernel::Triangle_3 Triangle;
VPmap vpmap = get(CGAL::vertex_point,polyhedron);
for(face_descriptor fd : faces(polyhedron)){
halfedge_descriptor h=halfedge(fd, polyhedron);
*out++ = Triangle(get(vpmap, target(h, polyhedron)),
get(vpmap, target(next(h, polyhedron), polyhedron)),
get(vpmap, source(h, polyhedron)));
}
}
|