1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
|
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_mesh_processing/approximated_centroidal_Voronoi_diagram_remeshing.h>
#include <CGAL/Polygon_mesh_processing/connected_components.h>
#include <CGAL/Polygon_mesh_processing/IO/polygon_mesh_io.h>
#include <CGAL/Surface_mesh.h>
#include <iostream>
#include <filesystem>
namespace PMP = CGAL::Polygon_mesh_processing;
typedef CGAL::Exact_predicates_inexact_constructions_kernel Epic_kernel;
typedef CGAL::Surface_mesh<Epic_kernel::Point_3> Mesh;
namespace params = CGAL::parameters;
int main(int argc, char* argv[])
{
Mesh smesh;
std::cout << "Seed : " << CGAL::get_default_random().get_seed() << std::endl;
const std::string filename = (argc > 1) ?
argv[1] :
CGAL::data_file_path("meshes/fandisk.off");
const std::string stem = std::filesystem::path(filename).stem().string();
const std::string extension = std::filesystem::path(filename).extension().string();
const int nb_clusters = (argc > 2) ? atoi(argv[2]) : 3000;
const std::string nbc = std::to_string(nb_clusters);
if (!CGAL::IO::read_polygon_mesh(filename, smesh))
{
std::cerr << "Invalid input file." << std::endl;
return EXIT_FAILURE;
}
///// make sure the input is a single connected component,
///// otherwise the input must be decomposed
auto fcm = smesh.add_property_map<Mesh::Face_index, std::size_t>("fcm", 0).first;
std::size_t nbcc = PMP::connected_components(smesh, fcm);
if (nbcc!=1)
{
std::cerr << "The input is not a single connected component mesh." << std::endl;
return EXIT_FAILURE;
}
///// Uniform Isotropic ACVD
std::cout << "Uniform Isotropic ACVD ...." << std::endl;
Mesh acvd_mesh = smesh;
PMP::approximated_centroidal_Voronoi_diagram_remeshing(acvd_mesh, nb_clusters);
CGAL::IO::write_polygon_mesh(stem+"_acvd_"+nbc+extension, acvd_mesh);
std::cout << "Completed" << std::endl;
//// With Post-Processing QEM Optimization
std::cout << "Uniform Isotropic ACVD with QEM optimization ...." << std::endl;
Mesh acvd_mesh_qem_pp = smesh;
PMP::approximated_centroidal_Voronoi_diagram_remeshing(acvd_mesh_qem_pp, nb_clusters, params::use_postprocessing_qem(true));
CGAL::IO::write_polygon_mesh( stem +"_acvd_qem-pp_"+nbc+extension, acvd_mesh_qem_pp);
std::cout << "Completed" << std::endl;
// With QEM Energy Minimization
std::cout << "Uniform QEM ACVD ...." << std::endl;
Mesh acvd_mesh_qem = smesh;
PMP::approximated_centroidal_Voronoi_diagram_remeshing(acvd_mesh_qem, nb_clusters, params::use_qem_based_energy(true));
CGAL::IO::write_polygon_mesh(stem +"_acvd_qem_"+ std::to_string(nb_clusters) + extension, acvd_mesh_qem);
/// Adaptive Isotropic ACVD
std::cout << "Adaptive Isotropic ACVD ...." << std::endl;
const double gradation_factor = 2;
Mesh adaptive_acvd_mesh = smesh;
PMP::approximated_centroidal_Voronoi_diagram_remeshing(adaptive_acvd_mesh, nb_clusters, params::gradation_factor(gradation_factor));
CGAL::IO::write_polygon_mesh(stem +"_acvd_adaptative_"+ std::to_string(nb_clusters) + extension, adaptive_acvd_mesh);
std::cout << "Completed" << std::endl;
return 0;
}
|