File: acvd_remeshing_example.cpp

package info (click to toggle)
cgal 6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 144,912 kB
  • sloc: cpp: 810,858; ansic: 208,477; sh: 493; python: 411; makefile: 286; javascript: 174
file content (84 lines) | stat: -rw-r--r-- 3,169 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_mesh_processing/approximated_centroidal_Voronoi_diagram_remeshing.h>
#include <CGAL/Polygon_mesh_processing/connected_components.h>
#include <CGAL/Polygon_mesh_processing/IO/polygon_mesh_io.h>
#include <CGAL/Surface_mesh.h>

#include <iostream>
#include <filesystem>

namespace PMP = CGAL::Polygon_mesh_processing;

typedef CGAL::Exact_predicates_inexact_constructions_kernel Epic_kernel;
typedef CGAL::Surface_mesh<Epic_kernel::Point_3> Mesh;

namespace params = CGAL::parameters;

int main(int argc, char* argv[])
{
  Mesh smesh;
  std::cout << "Seed : " << CGAL::get_default_random().get_seed() << std::endl;

  const std::string filename = (argc > 1) ?
    argv[1] :
    CGAL::data_file_path("meshes/fandisk.off");

  const std::string stem = std::filesystem::path(filename).stem().string();
  const std::string extension = std::filesystem::path(filename).extension().string();

  const int nb_clusters = (argc > 2) ? atoi(argv[2]) : 3000;
  const std::string nbc = std::to_string(nb_clusters);

  if (!CGAL::IO::read_polygon_mesh(filename, smesh))
  {
    std::cerr << "Invalid input file." << std::endl;
    return EXIT_FAILURE;
  }

  ///// make sure the input is a single connected component,
  ///// otherwise the input must be decomposed
  auto fcm = smesh.add_property_map<Mesh::Face_index, std::size_t>("fcm", 0).first;
  std::size_t nbcc = PMP::connected_components(smesh, fcm);
  if (nbcc!=1)
  {
    std::cerr << "The input is not a single connected component mesh." << std::endl;
    return EXIT_FAILURE;
  }

  ///// Uniform Isotropic ACVD
  std::cout << "Uniform Isotropic ACVD ...." << std::endl;
  Mesh acvd_mesh = smesh;
  PMP::approximated_centroidal_Voronoi_diagram_remeshing(acvd_mesh, nb_clusters);
  CGAL::IO::write_polygon_mesh(stem+"_acvd_"+nbc+extension, acvd_mesh);

  std::cout << "Completed" << std::endl;


  //// With Post-Processing QEM Optimization
  std::cout << "Uniform Isotropic ACVD with QEM optimization ...." << std::endl;

  Mesh acvd_mesh_qem_pp = smesh;
  PMP::approximated_centroidal_Voronoi_diagram_remeshing(acvd_mesh_qem_pp, nb_clusters, params::use_postprocessing_qem(true));
  CGAL::IO::write_polygon_mesh( stem +"_acvd_qem-pp_"+nbc+extension, acvd_mesh_qem_pp);

  std::cout << "Completed" << std::endl;

  // With QEM Energy Minimization
  std::cout << "Uniform QEM ACVD ...." << std::endl;
  Mesh acvd_mesh_qem = smesh;
  PMP::approximated_centroidal_Voronoi_diagram_remeshing(acvd_mesh_qem, nb_clusters, params::use_qem_based_energy(true));
  CGAL::IO::write_polygon_mesh(stem +"_acvd_qem_"+ std::to_string(nb_clusters) + extension, acvd_mesh_qem);

  /// Adaptive Isotropic ACVD
  std::cout << "Adaptive Isotropic ACVD ...." << std::endl;
  const double gradation_factor = 2;
  Mesh adaptive_acvd_mesh = smesh;
  PMP::approximated_centroidal_Voronoi_diagram_remeshing(adaptive_acvd_mesh, nb_clusters, params::gradation_factor(gradation_factor));

  CGAL::IO::write_polygon_mesh(stem +"_acvd_adaptative_"+ std::to_string(nb_clusters) + extension, adaptive_acvd_mesh);

  std::cout << "Completed" << std::endl;

  return 0;
}