1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
// Copyright (c) 2006-2009 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Algebraic_kernel_d/include/CGAL/Algebraic_kernel_d/construct_binary.h $
// $Id: include/CGAL/Algebraic_kernel_d/construct_binary.h b26b07a1242 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Michael Hemmer <hemmer@mpi-inf.mpg.de>
//
// ============================================================================
#ifndef CGAL_ALGEBRAIC_KERNEL_D_CONSTRUCT_BINARY_H
#define CGAL_ALGEBRAIC_KERNEL_D_CONSTRUCT_BINARY_H
#include <CGAL/basic.h>
#include <CGAL/ipower.h>
#ifdef CGAL_USE_LEDA
#include <CGAL/leda_integer.h>
#include <CGAL/leda_rational.h>
#endif
#ifdef CGAL_USE_CORE
#include <CGAL/CORE_BigInt.h>
#include <CGAL/CORE_BigRat.h>
#endif
#include <limits>
namespace CGAL {
namespace internal {
// Generic construct_binary function, using ipower
template< class Integer >
inline void construct_binary( const Integer& e, Integer& x ) {
CGAL_precondition( e >= 0 );
Integer exponent(e);
x = Integer(1);
const Integer max_ipower = (exponent > Integer((std::numeric_limits<int>::max)())) ?
CGAL::ipower( Integer(2), (std::numeric_limits<int>::max)() ) :
Integer(0);
while( exponent > Integer((std::numeric_limits<int>::max)()) ) {
x *= max_ipower;
exponent -= Integer((std::numeric_limits<int>::max)());
}
x *= CGAL::ipower( Integer(2), (int)CGAL::to_double(exponent) );
}
template< class Integer, class Rational >
inline void construct_binary( const Integer& m, const Integer& e, Rational& x ) {
Integer den(1), num;
if(e>0) {
construct_binary( e, num );
num *= m;
}
else {
num = m;
construct_binary( -e, den );
}
x = Rational(num, den);
}
// Specialization for LEDA
#ifdef CGAL_USE_LEDA
// Constructs 2^e from an integer e. Needed in Descartes
inline void construct_binary(const ::leda::integer& e, ::leda::integer& x) {
typedef ::leda::integer Integer;
x = Integer(1) << e.to_long();
}
// Constructs m*2^e from two integers m,e. Needed in Descartes
inline void construct_binary(const ::leda::integer& m, const ::leda::integer& e,
::leda::rational& x) {
typedef ::leda::integer Integer;
typedef ::leda::rational Rational;
Integer den(1);
Integer num(m);
if(e>0) {
num <<= e.to_long();
}
else {
den <<= (-e).to_long();
}
x = Rational(num, den);
}
#endif // CGAL_USE_LEDA
// Specialization for CORE
#ifdef CGAL_USE_CORE
// Constructs 2^e from an integer e. Needed in Descartes
inline void construct_binary(const ::CORE::BigInt& e, ::CORE::BigInt& x) {
typedef ::CORE::BigInt Integer;
x = Integer(1) << ::CORE::ulongValue(e);
}
// Constructs m*2^e from two integers m,e. Needed in Descardes
inline void construct_binary(const ::CORE::BigInt& m, const ::CORE::BigInt& e,
::CORE::BigRat& x) {
typedef ::CORE::BigInt Integer;
typedef ::CORE::BigRat Rational;
Integer den(1);
Integer num(m);
if(e>0) {
num <<= ::CORE::ulongValue(e);
}
else {
den <<= ::CORE::ulongValue(-e);
}
x = Rational(num, den);
}
#endif // CGAL_USE_CORE
} // namespace internal
} //namespace CGAL
#endif // CGAL_ALGEBRAIC_KERNEL_D_CONSTRUCT_BINARY_H
|