File: offset_intersection.h

package info (click to toggle)
cgal 6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 144,912 kB
  • sloc: cpp: 810,858; ansic: 208,477; sh: 493; python: 411; makefile: 286; javascript: 174
file content (220 lines) | stat: -rw-r--r-- 7,174 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
// Copyright (c) 2019-2022 Google LLC (USA).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Alpha_wrap_3/include/CGAL/Alpha_wrap_3/internal/offset_intersection.h $
// $Id: include/CGAL/Alpha_wrap_3/internal/offset_intersection.h b26b07a1242 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s)     : Pierre Alliez
//                 Cedric Portaneri,
//                 Mael Rouxel-Labbé
//                 Andreas Fabri
//                 Michael Hemmer
//
#ifndef CGAL_ALPHA_WRAP_3_INTERNAL_OFFSET_INTERSECTION_H
#define CGAL_ALPHA_WRAP_3_INTERNAL_OFFSET_INTERSECTION_H

#include <CGAL/license/Alpha_wrap_3.h>

#include <CGAL/number_utils.h>

#include <boost/algorithm/clamp.hpp>

namespace CGAL {
namespace Alpha_wraps_3 {
namespace internal {

template <typename AABBTree,
          typename AABBTraversalTraits>
struct AABB_tree_oracle_helper;

template <typename AABBTree, typename AABBTraversalTraits>
struct AABB_distance_oracle
{
  using FT = typename AABBTree::FT;
  using Point_3 = typename AABBTree::Point;

  using AABB_helper = AABB_tree_oracle_helper<AABBTree, AABBTraversalTraits>;

  AABB_distance_oracle(const AABBTree& tree) : tree(tree) { }

  FT operator()(const Point_3& p) const
  {
    return approximate_sqrt(AABB_helper::squared_distance(p, tree));
  }

private:
  const AABBTree& tree;
};

// @todo even with EPECK, the precision cannot be 0 (otherwise it will not converge),
// thus exactness is pointless. Might as well use a cheap kernel (e.g. SC<double>), as long
// as there exists a mechanism to catch when the cheap kernel fails to converge (iterations?
// see also Tr_3::locate() or Mesh_3::Robust_intersection_traits_3.h)
template <class Kernel, class DistanceOracle>
class Offset_intersection
{
  using FT = typename Kernel::FT;
  using Point_2 = typename Kernel::Point_2;
  using Point_3 = typename Kernel::Point_3;
  using Vector_3 = typename Kernel::Vector_3;

public:
  Offset_intersection(const DistanceOracle& oracle,
                      const FT& off,
                      const FT& prec,
                      const FT& lip)
    : dist_oracle(oracle), offset(off), precision(prec), lipschitz(lip)
  { }

  bool first_intersection(const Point_3& s,
                          const Point_3& t,
                          Point_3& output_pt)
  {
    source = s;
    target = t;
    seg_length = approximate_sqrt(squared_distance(s, t));
    seg_unit_v = (t - s) / seg_length;
    const Point_2 p0 { 0, dist_oracle(source) };
    const Point_2 p1 { seg_length, dist_oracle(target) };

    return recursive_dichotomic_search(p0, p1, output_pt);
  }

private:
  Point_3 source;
  Point_3 target;
  FT seg_length;
  Vector_3 seg_unit_v;
  DistanceOracle dist_oracle;
  FT offset;
  FT precision;
  FT lipschitz;

  template <class Point>
  bool recursive_dichotomic_search(const Point_2& s, const Point_2& t,
                                   Point& output_pt)
  {
    if(CGAL::abs(s.x() - t.x()) < precision)
    {
      if(CGAL::abs(s.y() - offset) < precision)
      {
        const FT x_clamp = boost::algorithm::clamp<FT>(s.x(), FT{0}, seg_length);
        output_pt = source + (seg_unit_v * x_clamp);
        return true;
      }

      return false;
    }

    const bool sign_s = (s.y() > offset);
    const bool sign_t = (t.y() > offset);
    const FT gs_a = (sign_s) ? -lipschitz : lipschitz;
    const FT gs_b = s.y() - (gs_a * s.x());
    const FT gt_a = (sign_t) ? lipschitz : -lipschitz;

    const FT gt_b = t.y() - (gt_a * t.x());
    FT ms = (offset - gs_b) / gs_a;
    FT mt = (offset - gt_b) / gt_a;

    // early exit if there is no intersection
    if(sign_s == sign_t)
    {
      FT ui = (gt_b - gs_b) / (gs_a - gt_a);
      const FT gs_ui = (gs_a * ui) + gs_b;
      if((sign_s && (gs_ui > offset)) || (!sign_s && (gs_ui < offset)))
      {
        if(CGAL::abs(s.y() - offset) < precision)
        {
          const FT x_clamp = boost::algorithm::clamp<FT>(s.x(), FT{0}, seg_length);
          output_pt = source + (seg_unit_v * x_clamp);
          return true;
        }
        else if(CGAL::abs(t.y() - offset) < precision)
        {
          const FT x_clamp = boost::algorithm::clamp<FT>(t.x(), FT{0}, seg_length);
          output_pt = source + (seg_unit_v * x_clamp);
          return true;
        }

        return false;
      }
      else
      {
        ms = boost::algorithm::clamp<FT>(ms, FT{0}, seg_length);
        ui = boost::algorithm::clamp<FT>(ui, FT{0}, seg_length);
        mt = boost::algorithm::clamp<FT>(mt, FT{0}, seg_length);
        const Point_2 ms_pt { ms, dist_oracle(source + (seg_unit_v * ms)) };
        const Point_2 ui_pt { ui, dist_oracle(source + (seg_unit_v * ui)) };
        const Point_2 mt_pt { mt, dist_oracle(source + (seg_unit_v * mt)) };

        if(CGAL::abs(ms_pt.y() - offset) < precision)
        {
          const FT x_clamp = boost::algorithm::clamp<FT>(ms_pt.x(), FT{0}, seg_length);
          output_pt = source + (seg_unit_v * x_clamp);
          return true;
        }
        else if(CGAL::abs(ui_pt.y() - offset) < precision)
        {
          const FT x_clamp = boost::algorithm::clamp<FT>(ui_pt.x(), FT{0}, seg_length);
          output_pt = source + (seg_unit_v * x_clamp);
          return true;
        }
        else if(CGAL::abs(mt_pt.y() - offset) < precision)
        {
          const FT x_clamp = boost::algorithm::clamp<FT>(mt_pt.x(), FT{0}, seg_length);
          output_pt = source + (seg_unit_v * x_clamp);
          return true;
        }

        return (recursive_dichotomic_search(ms_pt, ui_pt, output_pt) ||
                recursive_dichotomic_search(ui_pt, mt_pt, output_pt));
      }
    }
    else // there is an intersection
    {
      if(CGAL::abs(mt - ms) <= precision) // linear approximation
      {
        const FT fsft_a = (t.y() - s.y()) / (t.x() - s.x());
        const FT fsft_b = s.y() - fsft_a * s.x();
        FT m_fsft;
        if(fsft_a == FT{0})
        {
          if(CGAL::abs(s.y() - offset) < precision)
            m_fsft = s.x();
          else
            return false;
        }
        else
        {
          m_fsft = (offset - fsft_b) / fsft_a;
        }
        m_fsft = boost::algorithm::clamp<FT>(m_fsft, FT{0}, seg_length);
        output_pt = source + (seg_unit_v * m_fsft);
        return true;
      }
      else
      {
        FT m = (ms + mt) / FT{2};
        ms = boost::algorithm::clamp<FT>(ms, FT{0}, seg_length);
        m = boost::algorithm::clamp<FT>(m, FT{0}, seg_length);
        mt = boost::algorithm::clamp<FT>(mt, FT{0}, seg_length);

        const Point_2 ms_pt { ms, dist_oracle(source + (seg_unit_v * ms)) };
        const Point_2 m_pt { m, dist_oracle(source + (seg_unit_v * m)) };
        const Point_2 mt_pt { mt, dist_oracle(source + (seg_unit_v * mt)) };

        return (recursive_dichotomic_search(ms_pt, m_pt, output_pt) ||
                recursive_dichotomic_search(m_pt, mt_pt, output_pt));
      }
    }
  }
};

} // namespace internal
} // namespace Alpha_wraps_3
} // namespace CGAL

#endif // CGAL_ALPHA_WRAP_3_INTERNAL_OFFSET_INTERSECTION_H